...

Package rand

import "math/rand"
Overview
Index
Examples

Overview ▾

Package rand implements pseudo-random number generators unsuitable for security-sensitive work.

Random numbers are generated by a Source. Top-level functions, such as Float64 and Int, use a default shared Source that produces a deterministic sequence of values each time a program is run. Use the Seed function to initialize the default Source if different behavior is required for each run. The default Source is safe for concurrent use by multiple goroutines, but Sources created by NewSource are not.

This package's outputs might be easily predictable regardless of how it's seeded. For random numbers suitable for security-sensitive work, see the crypto/rand package.

Example

Code:

// Seeding with the same value results in the same random sequence each run.
// For different numbers, seed with a different value, such as
// time.Now().UnixNano(), which yields a constantly-changing number.
rand.Seed(42)
answers := []string{
		"It is certain",
		"It is decidedly so",
		"Without a doubt",
		"Yes definitely",
		"You may rely on it",
		"As I see it yes",
		"Most likely",
		"Outlook good",
		"Yes",
		"Signs point to yes",
		"Reply hazy try again",
		"Ask again later",
		"Better not tell you now",
		"Cannot predict now",
		"Concentrate and ask again",
		"Don't count on it",
		"My reply is no",
		"My sources say no",
		"Outlook not so good",
		"Very doubtful",
}
fmt.Println("Magic 8-Ball says:", answers[rand.Intn(len(answers))])

Output:

Magic 8-Ball says: As I see it yes
Example (Rand)

This example shows the use of each of the methods on a *Rand. The use of the global functions is the same, without the receiver.

Code:

// Create and seed the generator.
// Typically a non-fixed seed should be used, such as time.Now().UnixNano().
// Using a fixed seed will produce the same output on every run.
r := rand.New(rand.NewSource(99))

// The tabwriter here helps us generate aligned output.
w := tabwriter.NewWriter(os.Stdout, 1, 1, 1, ' ', 0)
defer w.Flush()
show := func(name string, v1, v2, v3 interface{}) {
		fmt.Fprintf(w, "%s\t%v\t%v\t%v\n", name, v1, v2, v3)
}

// Float32 and Float64 values are in [0, 1).
show("Float32", r.Float32(), r.Float32(), r.Float32())
show("Float64", r.Float64(), r.Float64(), r.Float64())

// ExpFloat64 values have an average of 1 but decay exponentially.
show("ExpFloat64", r.ExpFloat64(), r.ExpFloat64(), r.ExpFloat64())

// NormFloat64 values have an average of 0 and a standard deviation of 1.
show("NormFloat64", r.NormFloat64(), r.NormFloat64(), r.NormFloat64())

// Int31, Int63, and Uint32 generate values of the given width.
// The Int method (not shown) is like either Int31 or Int63
// depending on the size of 'int'.
show("Int31", r.Int31(), r.Int31(), r.Int31())
show("Int63", r.Int63(), r.Int63(), r.Int63())
show("Uint32", r.Uint32(), r.Uint32(), r.Uint32())

// Intn, Int31n, and Int63n limit their output to be < n.
// They do so more carefully than using r.Int()%n.
show("Intn(10)", r.Intn(10), r.Intn(10), r.Intn(10))
show("Int31n(10)", r.Int31n(10), r.Int31n(10), r.Int31n(10))
show("Int63n(10)", r.Int63n(10), r.Int63n(10), r.Int63n(10))

// Perm generates a random permutation of the numbers [0, n).
show("Perm", r.Perm(5), r.Perm(5), r.Perm(5))

Output:

Float32		 0.2635776					 0.6358173					 0.6718283
Float64		 0.628605430454327	 0.4504798828572669	0.9562755949377957
ExpFloat64	0.3362240648200941	1.4256072328483647	0.24354758816173044
NormFloat64 0.17233959114940064 1.577014951434847	 0.04259129641113857
Int31			 1501292890					1486668269					182840835
Int63			 3546343826724305832 5724354148158589552 5239846799706671610
Uint32			2760229429					296659907					 1922395059
Intn(10)		1									 2									 5
Int31n(10)	4									 7									 8
Int63n(10)	7									 6									 3
Perm				[1 4 2 3 0]				 [4 2 1 3 0]				 [1 2 4 0 3]

func ExpFloat64

func ExpFloat64() float64

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter

func Float32

func Float32() float32

Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0) from the default Source.

func Float64

func Float64() float64

Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0) from the default Source.

func Int

func Int() int

Int returns a non-negative pseudo-random int from the default Source.

func Int31

func Int31() int32

Int31 returns a non-negative pseudo-random 31-bit integer as an int32 from the default Source.

func Int31n

func Int31n(n int32) int32

Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

func Int63

func Int63() int64

Int63 returns a non-negative pseudo-random 63-bit integer as an int64 from the default Source.

func Int63n

func Int63n(n int64) int64

Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

func Intn

func Intn(n int) int

Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n) from the default Source. It panics if n <= 0.

Example

Code:

// Seeding with the same value results in the same random sequence each run.
// For different numbers, seed with a different value, such as
// time.Now().UnixNano(), which yields a constantly-changing number.
rand.Seed(86)
fmt.Println(rand.Intn(100))
fmt.Println(rand.Intn(100))
fmt.Println(rand.Intn(100))

Output:

42
76
30

func NormFloat64

func NormFloat64() float64

NormFloat64 returns a normally distributed float64 in the range [-math.MaxFloat64, +math.MaxFloat64] with standard normal distribution (mean = 0, stddev = 1) from the default Source. To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean

func Perm

func Perm(n int) []int

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers in the half-open interval [0,n) from the default Source.

Example

Code:

for _, value := range rand.Perm(3) {
		fmt.Println(value)
}

Output:

1
2
0

func Read 1.6

func Read(p []byte) (n int, err error)

Read generates len(p) random bytes from the default Source and writes them into p. It always returns len(p) and a nil error. Read, unlike the Rand.Read method, is safe for concurrent use.

func Seed

func Seed(seed int64)

Seed uses the provided seed value to initialize the default Source to a deterministic state. If Seed is not called, the generator behaves as if seeded by Seed(1). Seed values that have the same remainder when divided by 2³¹-1 generate the same pseudo-random sequence. Seed, unlike the Rand.Seed method, is safe for concurrent use.

func Shuffle 1.10

func Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements using the default Source. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

Example

Code:

words := strings.Fields("ink runs from the corners of my mouth")
rand.Shuffle(len(words), func(i, j int) {
		words[i], words[j] = words[j], words[i]
})
fmt.Println(words)

Output:

[mouth my the of runs corners from ink]
Example (SlicesInUnison)

Code:

numbers := []byte("12345")
letters := []byte("ABCDE")
// Shuffle numbers, swapping corresponding entries in letters at the same time.
rand.Shuffle(len(numbers), func(i, j int) {
		numbers[i], numbers[j] = numbers[j], numbers[i]
		letters[i], letters[j] = letters[j], letters[i]
})
for i := range numbers {
		fmt.Printf("%c: %c\n", letters[i], numbers[i])
}

Output:

C: 3
D: 4
A: 1
E: 5
B: 2

func Uint32

func Uint32() uint32

Uint32 returns a pseudo-random 32-bit value as a uint32 from the default Source.

func Uint64 1.8

func Uint64() uint64

Uint64 returns a pseudo-random 64-bit value as a uint64 from the default Source.

type Rand

A Rand is a source of random numbers.

type Rand struct {
		// contains filtered or unexported fields
}

func New

func New(src Source) *Rand

New returns a new Rand that uses random values from src to generate other random values.

func (*Rand) ExpFloat64

func (r *Rand) ExpFloat64() float64

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1). To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter

func (*Rand) Float32

func (r *Rand) Float32() float32

Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).

func (*Rand) Float64

func (r *Rand) Float64() float64

Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).

func (*Rand) Int

func (r *Rand) Int() int

Int returns a non-negative pseudo-random int.

func (*Rand) Int31

func (r *Rand) Int31() int32

Int31 returns a non-negative pseudo-random 31-bit integer as an int32.

func (*Rand) Int31n

func (r *Rand) Int31n(n int32) int32

Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) Int63

func (r *Rand) Int63() int64

Int63 returns a non-negative pseudo-random 63-bit integer as an int64.

func (*Rand) Int63n

func (r *Rand) Int63n(n int64) int64

Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) Intn

func (r *Rand) Intn(n int) int

Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n). It panics if n <= 0.

func (*Rand) NormFloat64

func (r *Rand) NormFloat64() float64

NormFloat64 returns a normally distributed float64 in the range -math.MaxFloat64 through +math.MaxFloat64 inclusive, with standard normal distribution (mean = 0, stddev = 1). To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean

func (*Rand) Perm

func (r *Rand) Perm(n int) []int

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers in the half-open interval [0,n).

func (*Rand) Read 1.6

func (r *Rand) Read(p []byte) (n int, err error)

Read generates len(p) random bytes and writes them into p. It always returns len(p) and a nil error. Read should not be called concurrently with any other Rand method.

func (*Rand) Seed

func (r *Rand) Seed(seed int64)

Seed uses the provided seed value to initialize the generator to a deterministic state. Seed should not be called concurrently with any other Rand method.

func (*Rand) Shuffle 1.10

func (r *Rand) Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

func (*Rand) Uint32

func (r *Rand) Uint32() uint32

Uint32 returns a pseudo-random 32-bit value as a uint32.

func (*Rand) Uint64 1.8

func (r *Rand) Uint64() uint64

Uint64 returns a pseudo-random 64-bit value as a uint64.

type Source

A Source represents a source of uniformly-distributed pseudo-random int64 values in the range [0, 1<<63).

type Source interface {
		Int63() int64
		Seed(seed int64)
}

func NewSource

func NewSource(seed int64) Source

NewSource returns a new pseudo-random Source seeded with the given value. Unlike the default Source used by top-level functions, this source is not safe for concurrent use by multiple goroutines.

type Source64 1.8

A Source64 is a Source that can also generate uniformly-distributed pseudo-random uint64 values in the range [0, 1<<64) directly. If a Rand r's underlying Source s implements Source64, then r.Uint64 returns the result of one call to s.Uint64 instead of making two calls to s.Int63.

type Source64 interface {
		Source
		Uint64() uint64
}

type Zipf

A Zipf generates Zipf distributed variates.

type Zipf struct {
		// contains filtered or unexported fields
}

func NewZipf

func NewZipf(r *Rand, s float64, v float64, imax uint64) *Zipf

NewZipf returns a Zipf variate generator. The generator generates values k ∈ [0, imax] such that P(k) is proportional to (v + k) ** (-s). Requirements: s > 1 and v >= 1.

func (*Zipf) Uint64

func (z *Zipf) Uint64() uint64

Uint64 returns a value drawn from the Zipf distribution described by the Zipf object.