...

Source file src/compress/flate/huffman_code.go

Documentation: compress/flate

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package flate
		 6  
		 7  import (
		 8  	"math"
		 9  	"math/bits"
		10  	"sort"
		11  )
		12  
		13  // hcode is a huffman code with a bit code and bit length.
		14  type hcode struct {
		15  	code, len uint16
		16  }
		17  
		18  type huffmanEncoder struct {
		19  	codes		 []hcode
		20  	freqcache []literalNode
		21  	bitCount	[17]int32
		22  	lns			 byLiteral // stored to avoid repeated allocation in generate
		23  	lfs			 byFreq		// stored to avoid repeated allocation in generate
		24  }
		25  
		26  type literalNode struct {
		27  	literal uint16
		28  	freq		int32
		29  }
		30  
		31  // A levelInfo describes the state of the constructed tree for a given depth.
		32  type levelInfo struct {
		33  	// Our level.	for better printing
		34  	level int32
		35  
		36  	// The frequency of the last node at this level
		37  	lastFreq int32
		38  
		39  	// The frequency of the next character to add to this level
		40  	nextCharFreq int32
		41  
		42  	// The frequency of the next pair (from level below) to add to this level.
		43  	// Only valid if the "needed" value of the next lower level is 0.
		44  	nextPairFreq int32
		45  
		46  	// The number of chains remaining to generate for this level before moving
		47  	// up to the next level
		48  	needed int32
		49  }
		50  
		51  // set sets the code and length of an hcode.
		52  func (h *hcode) set(code uint16, length uint16) {
		53  	h.len = length
		54  	h.code = code
		55  }
		56  
		57  func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
		58  
		59  func newHuffmanEncoder(size int) *huffmanEncoder {
		60  	return &huffmanEncoder{codes: make([]hcode, size)}
		61  }
		62  
		63  // Generates a HuffmanCode corresponding to the fixed literal table
		64  func generateFixedLiteralEncoding() *huffmanEncoder {
		65  	h := newHuffmanEncoder(maxNumLit)
		66  	codes := h.codes
		67  	var ch uint16
		68  	for ch = 0; ch < maxNumLit; ch++ {
		69  		var bits uint16
		70  		var size uint16
		71  		switch {
		72  		case ch < 144:
		73  			// size 8, 000110000	.. 10111111
		74  			bits = ch + 48
		75  			size = 8
		76  			break
		77  		case ch < 256:
		78  			// size 9, 110010000 .. 111111111
		79  			bits = ch + 400 - 144
		80  			size = 9
		81  			break
		82  		case ch < 280:
		83  			// size 7, 0000000 .. 0010111
		84  			bits = ch - 256
		85  			size = 7
		86  			break
		87  		default:
		88  			// size 8, 11000000 .. 11000111
		89  			bits = ch + 192 - 280
		90  			size = 8
		91  		}
		92  		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
		93  	}
		94  	return h
		95  }
		96  
		97  func generateFixedOffsetEncoding() *huffmanEncoder {
		98  	h := newHuffmanEncoder(30)
		99  	codes := h.codes
	 100  	for ch := range codes {
	 101  		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
	 102  	}
	 103  	return h
	 104  }
	 105  
	 106  var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
	 107  var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
	 108  
	 109  func (h *huffmanEncoder) bitLength(freq []int32) int {
	 110  	var total int
	 111  	for i, f := range freq {
	 112  		if f != 0 {
	 113  			total += int(f) * int(h.codes[i].len)
	 114  		}
	 115  	}
	 116  	return total
	 117  }
	 118  
	 119  const maxBitsLimit = 16
	 120  
	 121  // Return the number of literals assigned to each bit size in the Huffman encoding
	 122  //
	 123  // This method is only called when list.length >= 3
	 124  // The cases of 0, 1, and 2 literals are handled by special case code.
	 125  //
	 126  // list	An array of the literals with non-zero frequencies
	 127  //						 and their associated frequencies. The array is in order of increasing
	 128  //						 frequency, and has as its last element a special element with frequency
	 129  //						 MaxInt32
	 130  // maxBits		 The maximum number of bits that should be used to encode any literal.
	 131  //						 Must be less than 16.
	 132  // return			An integer array in which array[i] indicates the number of literals
	 133  //						 that should be encoded in i bits.
	 134  func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
	 135  	if maxBits >= maxBitsLimit {
	 136  		panic("flate: maxBits too large")
	 137  	}
	 138  	n := int32(len(list))
	 139  	list = list[0 : n+1]
	 140  	list[n] = maxNode()
	 141  
	 142  	// The tree can't have greater depth than n - 1, no matter what. This
	 143  	// saves a little bit of work in some small cases
	 144  	if maxBits > n-1 {
	 145  		maxBits = n - 1
	 146  	}
	 147  
	 148  	// Create information about each of the levels.
	 149  	// A bogus "Level 0" whose sole purpose is so that
	 150  	// level1.prev.needed==0.	This makes level1.nextPairFreq
	 151  	// be a legitimate value that never gets chosen.
	 152  	var levels [maxBitsLimit]levelInfo
	 153  	// leafCounts[i] counts the number of literals at the left
	 154  	// of ancestors of the rightmost node at level i.
	 155  	// leafCounts[i][j] is the number of literals at the left
	 156  	// of the level j ancestor.
	 157  	var leafCounts [maxBitsLimit][maxBitsLimit]int32
	 158  
	 159  	for level := int32(1); level <= maxBits; level++ {
	 160  		// For every level, the first two items are the first two characters.
	 161  		// We initialize the levels as if we had already figured this out.
	 162  		levels[level] = levelInfo{
	 163  			level:				level,
	 164  			lastFreq:		 list[1].freq,
	 165  			nextCharFreq: list[2].freq,
	 166  			nextPairFreq: list[0].freq + list[1].freq,
	 167  		}
	 168  		leafCounts[level][level] = 2
	 169  		if level == 1 {
	 170  			levels[level].nextPairFreq = math.MaxInt32
	 171  		}
	 172  	}
	 173  
	 174  	// We need a total of 2*n - 2 items at top level and have already generated 2.
	 175  	levels[maxBits].needed = 2*n - 4
	 176  
	 177  	level := maxBits
	 178  	for {
	 179  		l := &levels[level]
	 180  		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
	 181  			// We've run out of both leafs and pairs.
	 182  			// End all calculations for this level.
	 183  			// To make sure we never come back to this level or any lower level,
	 184  			// set nextPairFreq impossibly large.
	 185  			l.needed = 0
	 186  			levels[level+1].nextPairFreq = math.MaxInt32
	 187  			level++
	 188  			continue
	 189  		}
	 190  
	 191  		prevFreq := l.lastFreq
	 192  		if l.nextCharFreq < l.nextPairFreq {
	 193  			// The next item on this row is a leaf node.
	 194  			n := leafCounts[level][level] + 1
	 195  			l.lastFreq = l.nextCharFreq
	 196  			// Lower leafCounts are the same of the previous node.
	 197  			leafCounts[level][level] = n
	 198  			l.nextCharFreq = list[n].freq
	 199  		} else {
	 200  			// The next item on this row is a pair from the previous row.
	 201  			// nextPairFreq isn't valid until we generate two
	 202  			// more values in the level below
	 203  			l.lastFreq = l.nextPairFreq
	 204  			// Take leaf counts from the lower level, except counts[level] remains the same.
	 205  			copy(leafCounts[level][:level], leafCounts[level-1][:level])
	 206  			levels[l.level-1].needed = 2
	 207  		}
	 208  
	 209  		if l.needed--; l.needed == 0 {
	 210  			// We've done everything we need to do for this level.
	 211  			// Continue calculating one level up. Fill in nextPairFreq
	 212  			// of that level with the sum of the two nodes we've just calculated on
	 213  			// this level.
	 214  			if l.level == maxBits {
	 215  				// All done!
	 216  				break
	 217  			}
	 218  			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
	 219  			level++
	 220  		} else {
	 221  			// If we stole from below, move down temporarily to replenish it.
	 222  			for levels[level-1].needed > 0 {
	 223  				level--
	 224  			}
	 225  		}
	 226  	}
	 227  
	 228  	// Somethings is wrong if at the end, the top level is null or hasn't used
	 229  	// all of the leaves.
	 230  	if leafCounts[maxBits][maxBits] != n {
	 231  		panic("leafCounts[maxBits][maxBits] != n")
	 232  	}
	 233  
	 234  	bitCount := h.bitCount[:maxBits+1]
	 235  	bits := 1
	 236  	counts := &leafCounts[maxBits]
	 237  	for level := maxBits; level > 0; level-- {
	 238  		// chain.leafCount gives the number of literals requiring at least "bits"
	 239  		// bits to encode.
	 240  		bitCount[bits] = counts[level] - counts[level-1]
	 241  		bits++
	 242  	}
	 243  	return bitCount
	 244  }
	 245  
	 246  // Look at the leaves and assign them a bit count and an encoding as specified
	 247  // in RFC 1951 3.2.2
	 248  func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
	 249  	code := uint16(0)
	 250  	for n, bits := range bitCount {
	 251  		code <<= 1
	 252  		if n == 0 || bits == 0 {
	 253  			continue
	 254  		}
	 255  		// The literals list[len(list)-bits] .. list[len(list)-bits]
	 256  		// are encoded using "bits" bits, and get the values
	 257  		// code, code + 1, ....	The code values are
	 258  		// assigned in literal order (not frequency order).
	 259  		chunk := list[len(list)-int(bits):]
	 260  
	 261  		h.lns.sort(chunk)
	 262  		for _, node := range chunk {
	 263  			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
	 264  			code++
	 265  		}
	 266  		list = list[0 : len(list)-int(bits)]
	 267  	}
	 268  }
	 269  
	 270  // Update this Huffman Code object to be the minimum code for the specified frequency count.
	 271  //
	 272  // freq	An array of frequencies, in which frequency[i] gives the frequency of literal i.
	 273  // maxBits	The maximum number of bits to use for any literal.
	 274  func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
	 275  	if h.freqcache == nil {
	 276  		// Allocate a reusable buffer with the longest possible frequency table.
	 277  		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
	 278  		// The largest of these is maxNumLit, so we allocate for that case.
	 279  		h.freqcache = make([]literalNode, maxNumLit+1)
	 280  	}
	 281  	list := h.freqcache[:len(freq)+1]
	 282  	// Number of non-zero literals
	 283  	count := 0
	 284  	// Set list to be the set of all non-zero literals and their frequencies
	 285  	for i, f := range freq {
	 286  		if f != 0 {
	 287  			list[count] = literalNode{uint16(i), f}
	 288  			count++
	 289  		} else {
	 290  			list[count] = literalNode{}
	 291  			h.codes[i].len = 0
	 292  		}
	 293  	}
	 294  	list[len(freq)] = literalNode{}
	 295  
	 296  	list = list[:count]
	 297  	if count <= 2 {
	 298  		// Handle the small cases here, because they are awkward for the general case code. With
	 299  		// two or fewer literals, everything has bit length 1.
	 300  		for i, node := range list {
	 301  			// "list" is in order of increasing literal value.
	 302  			h.codes[node.literal].set(uint16(i), 1)
	 303  		}
	 304  		return
	 305  	}
	 306  	h.lfs.sort(list)
	 307  
	 308  	// Get the number of literals for each bit count
	 309  	bitCount := h.bitCounts(list, maxBits)
	 310  	// And do the assignment
	 311  	h.assignEncodingAndSize(bitCount, list)
	 312  }
	 313  
	 314  type byLiteral []literalNode
	 315  
	 316  func (s *byLiteral) sort(a []literalNode) {
	 317  	*s = byLiteral(a)
	 318  	sort.Sort(s)
	 319  }
	 320  
	 321  func (s byLiteral) Len() int { return len(s) }
	 322  
	 323  func (s byLiteral) Less(i, j int) bool {
	 324  	return s[i].literal < s[j].literal
	 325  }
	 326  
	 327  func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
	 328  
	 329  type byFreq []literalNode
	 330  
	 331  func (s *byFreq) sort(a []literalNode) {
	 332  	*s = byFreq(a)
	 333  	sort.Sort(s)
	 334  }
	 335  
	 336  func (s byFreq) Len() int { return len(s) }
	 337  
	 338  func (s byFreq) Less(i, j int) bool {
	 339  	if s[i].freq == s[j].freq {
	 340  		return s[i].literal < s[j].literal
	 341  	}
	 342  	return s[i].freq < s[j].freq
	 343  }
	 344  
	 345  func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
	 346  
	 347  func reverseBits(number uint16, bitLength byte) uint16 {
	 348  	return bits.Reverse16(number << (16 - bitLength))
	 349  }
	 350  

View as plain text