...

Source file src/crypto/rsa/pkcs1v15.go

Documentation: crypto/rsa

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package rsa
		 6  
		 7  import (
		 8  	"crypto"
		 9  	"crypto/subtle"
		10  	"errors"
		11  	"io"
		12  	"math/big"
		13  
		14  	"crypto/internal/randutil"
		15  )
		16  
		17  // This file implements encryption and decryption using PKCS #1 v1.5 padding.
		18  
		19  // PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
		20  // the crypto.Decrypter interface.
		21  type PKCS1v15DecryptOptions struct {
		22  	// SessionKeyLen is the length of the session key that is being
		23  	// decrypted. If not zero, then a padding error during decryption will
		24  	// cause a random plaintext of this length to be returned rather than
		25  	// an error. These alternatives happen in constant time.
		26  	SessionKeyLen int
		27  }
		28  
		29  // EncryptPKCS1v15 encrypts the given message with RSA and the padding
		30  // scheme from PKCS #1 v1.5.	The message must be no longer than the
		31  // length of the public modulus minus 11 bytes.
		32  //
		33  // The rand parameter is used as a source of entropy to ensure that
		34  // encrypting the same message twice doesn't result in the same
		35  // ciphertext.
		36  //
		37  // WARNING: use of this function to encrypt plaintexts other than
		38  // session keys is dangerous. Use RSA OAEP in new protocols.
		39  func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
		40  	randutil.MaybeReadByte(rand)
		41  
		42  	if err := checkPub(pub); err != nil {
		43  		return nil, err
		44  	}
		45  	k := pub.Size()
		46  	if len(msg) > k-11 {
		47  		return nil, ErrMessageTooLong
		48  	}
		49  
		50  	// EM = 0x00 || 0x02 || PS || 0x00 || M
		51  	em := make([]byte, k)
		52  	em[1] = 2
		53  	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
		54  	err := nonZeroRandomBytes(ps, rand)
		55  	if err != nil {
		56  		return nil, err
		57  	}
		58  	em[len(em)-len(msg)-1] = 0
		59  	copy(mm, msg)
		60  
		61  	m := new(big.Int).SetBytes(em)
		62  	c := encrypt(new(big.Int), pub, m)
		63  
		64  	return c.FillBytes(em), nil
		65  }
		66  
		67  // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
		68  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
		69  //
		70  // Note that whether this function returns an error or not discloses secret
		71  // information. If an attacker can cause this function to run repeatedly and
		72  // learn whether each instance returned an error then they can decrypt and
		73  // forge signatures as if they had the private key. See
		74  // DecryptPKCS1v15SessionKey for a way of solving this problem.
		75  func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
		76  	if err := checkPub(&priv.PublicKey); err != nil {
		77  		return nil, err
		78  	}
		79  	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
		80  	if err != nil {
		81  		return nil, err
		82  	}
		83  	if valid == 0 {
		84  		return nil, ErrDecryption
		85  	}
		86  	return out[index:], nil
		87  }
		88  
		89  // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
		90  // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
		91  // It returns an error if the ciphertext is the wrong length or if the
		92  // ciphertext is greater than the public modulus. Otherwise, no error is
		93  // returned. If the padding is valid, the resulting plaintext message is copied
		94  // into key. Otherwise, key is unchanged. These alternatives occur in constant
		95  // time. It is intended that the user of this function generate a random
		96  // session key beforehand and continue the protocol with the resulting value.
		97  // This will remove any possibility that an attacker can learn any information
		98  // about the plaintext.
		99  // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
	 100  // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
	 101  // (Crypto '98).
	 102  //
	 103  // Note that if the session key is too small then it may be possible for an
	 104  // attacker to brute-force it. If they can do that then they can learn whether
	 105  // a random value was used (because it'll be different for the same ciphertext)
	 106  // and thus whether the padding was correct. This defeats the point of this
	 107  // function. Using at least a 16-byte key will protect against this attack.
	 108  func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
	 109  	if err := checkPub(&priv.PublicKey); err != nil {
	 110  		return err
	 111  	}
	 112  	k := priv.Size()
	 113  	if k-(len(key)+3+8) < 0 {
	 114  		return ErrDecryption
	 115  	}
	 116  
	 117  	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
	 118  	if err != nil {
	 119  		return err
	 120  	}
	 121  
	 122  	if len(em) != k {
	 123  		// This should be impossible because decryptPKCS1v15 always
	 124  		// returns the full slice.
	 125  		return ErrDecryption
	 126  	}
	 127  
	 128  	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
	 129  	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
	 130  	return nil
	 131  }
	 132  
	 133  // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
	 134  // rand is not nil. It returns one or zero in valid that indicates whether the
	 135  // plaintext was correctly structured. In either case, the plaintext is
	 136  // returned in em so that it may be read independently of whether it was valid
	 137  // in order to maintain constant memory access patterns. If the plaintext was
	 138  // valid then index contains the index of the original message in em.
	 139  func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
	 140  	k := priv.Size()
	 141  	if k < 11 {
	 142  		err = ErrDecryption
	 143  		return
	 144  	}
	 145  
	 146  	c := new(big.Int).SetBytes(ciphertext)
	 147  	m, err := decrypt(rand, priv, c)
	 148  	if err != nil {
	 149  		return
	 150  	}
	 151  
	 152  	em = m.FillBytes(make([]byte, k))
	 153  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
	 154  	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
	 155  
	 156  	// The remainder of the plaintext must be a string of non-zero random
	 157  	// octets, followed by a 0, followed by the message.
	 158  	//	 lookingForIndex: 1 iff we are still looking for the zero.
	 159  	//	 index: the offset of the first zero byte.
	 160  	lookingForIndex := 1
	 161  
	 162  	for i := 2; i < len(em); i++ {
	 163  		equals0 := subtle.ConstantTimeByteEq(em[i], 0)
	 164  		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
	 165  		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
	 166  	}
	 167  
	 168  	// The PS padding must be at least 8 bytes long, and it starts two
	 169  	// bytes into em.
	 170  	validPS := subtle.ConstantTimeLessOrEq(2+8, index)
	 171  
	 172  	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
	 173  	index = subtle.ConstantTimeSelect(valid, index+1, 0)
	 174  	return valid, em, index, nil
	 175  }
	 176  
	 177  // nonZeroRandomBytes fills the given slice with non-zero random octets.
	 178  func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
	 179  	_, err = io.ReadFull(rand, s)
	 180  	if err != nil {
	 181  		return
	 182  	}
	 183  
	 184  	for i := 0; i < len(s); i++ {
	 185  		for s[i] == 0 {
	 186  			_, err = io.ReadFull(rand, s[i:i+1])
	 187  			if err != nil {
	 188  				return
	 189  			}
	 190  			// In tests, the PRNG may return all zeros so we do
	 191  			// this to break the loop.
	 192  			s[i] ^= 0x42
	 193  		}
	 194  	}
	 195  
	 196  	return
	 197  }
	 198  
	 199  // These are ASN1 DER structures:
	 200  //	 DigestInfo ::= SEQUENCE {
	 201  //		 digestAlgorithm AlgorithmIdentifier,
	 202  //		 digest OCTET STRING
	 203  //	 }
	 204  // For performance, we don't use the generic ASN1 encoder. Rather, we
	 205  // precompute a prefix of the digest value that makes a valid ASN1 DER string
	 206  // with the correct contents.
	 207  var hashPrefixes = map[crypto.Hash][]byte{
	 208  	crypto.MD5:			 {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
	 209  	crypto.SHA1:			{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
	 210  	crypto.SHA224:		{0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
	 211  	crypto.SHA256:		{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
	 212  	crypto.SHA384:		{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
	 213  	crypto.SHA512:		{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
	 214  	crypto.MD5SHA1:	 {}, // A special TLS case which doesn't use an ASN1 prefix.
	 215  	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
	 216  }
	 217  
	 218  // SignPKCS1v15 calculates the signature of hashed using
	 219  // RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5.	Note that hashed must
	 220  // be the result of hashing the input message using the given hash
	 221  // function. If hash is zero, hashed is signed directly. This isn't
	 222  // advisable except for interoperability.
	 223  //
	 224  // If rand is not nil then RSA blinding will be used to avoid timing
	 225  // side-channel attacks.
	 226  //
	 227  // This function is deterministic. Thus, if the set of possible
	 228  // messages is small, an attacker may be able to build a map from
	 229  // messages to signatures and identify the signed messages. As ever,
	 230  // signatures provide authenticity, not confidentiality.
	 231  func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
	 232  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
	 233  	if err != nil {
	 234  		return nil, err
	 235  	}
	 236  
	 237  	tLen := len(prefix) + hashLen
	 238  	k := priv.Size()
	 239  	if k < tLen+11 {
	 240  		return nil, ErrMessageTooLong
	 241  	}
	 242  
	 243  	// EM = 0x00 || 0x01 || PS || 0x00 || T
	 244  	em := make([]byte, k)
	 245  	em[1] = 1
	 246  	for i := 2; i < k-tLen-1; i++ {
	 247  		em[i] = 0xff
	 248  	}
	 249  	copy(em[k-tLen:k-hashLen], prefix)
	 250  	copy(em[k-hashLen:k], hashed)
	 251  
	 252  	m := new(big.Int).SetBytes(em)
	 253  	c, err := decryptAndCheck(rand, priv, m)
	 254  	if err != nil {
	 255  		return nil, err
	 256  	}
	 257  
	 258  	return c.FillBytes(em), nil
	 259  }
	 260  
	 261  // VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
	 262  // hashed is the result of hashing the input message using the given hash
	 263  // function and sig is the signature. A valid signature is indicated by
	 264  // returning a nil error. If hash is zero then hashed is used directly. This
	 265  // isn't advisable except for interoperability.
	 266  func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
	 267  	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
	 268  	if err != nil {
	 269  		return err
	 270  	}
	 271  
	 272  	tLen := len(prefix) + hashLen
	 273  	k := pub.Size()
	 274  	if k < tLen+11 {
	 275  		return ErrVerification
	 276  	}
	 277  
	 278  	// RFC 8017 Section 8.2.2: If the length of the signature S is not k
	 279  	// octets (where k is the length in octets of the RSA modulus n), output
	 280  	// "invalid signature" and stop.
	 281  	if k != len(sig) {
	 282  		return ErrVerification
	 283  	}
	 284  
	 285  	c := new(big.Int).SetBytes(sig)
	 286  	m := encrypt(new(big.Int), pub, c)
	 287  	em := m.FillBytes(make([]byte, k))
	 288  	// EM = 0x00 || 0x01 || PS || 0x00 || T
	 289  
	 290  	ok := subtle.ConstantTimeByteEq(em[0], 0)
	 291  	ok &= subtle.ConstantTimeByteEq(em[1], 1)
	 292  	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
	 293  	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
	 294  	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
	 295  
	 296  	for i := 2; i < k-tLen-1; i++ {
	 297  		ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
	 298  	}
	 299  
	 300  	if ok != 1 {
	 301  		return ErrVerification
	 302  	}
	 303  
	 304  	return nil
	 305  }
	 306  
	 307  func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
	 308  	// Special case: crypto.Hash(0) is used to indicate that the data is
	 309  	// signed directly.
	 310  	if hash == 0 {
	 311  		return inLen, nil, nil
	 312  	}
	 313  
	 314  	hashLen = hash.Size()
	 315  	if inLen != hashLen {
	 316  		return 0, nil, errors.New("crypto/rsa: input must be hashed message")
	 317  	}
	 318  	prefix, ok := hashPrefixes[hash]
	 319  	if !ok {
	 320  		return 0, nil, errors.New("crypto/rsa: unsupported hash function")
	 321  	}
	 322  	return
	 323  }
	 324  

View as plain text