...

Source file src/go/printer/nodes.go

Documentation: go/printer

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // This file implements printing of AST nodes; specifically
		 6  // expressions, statements, declarations, and files. It uses
		 7  // the print functionality implemented in printer.go.
		 8  
		 9  package printer
		10  
		11  import (
		12  	"bytes"
		13  	"go/ast"
		14  	"go/internal/typeparams"
		15  	"go/token"
		16  	"math"
		17  	"strconv"
		18  	"strings"
		19  	"unicode"
		20  	"unicode/utf8"
		21  )
		22  
		23  // Formatting issues:
		24  // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration)
		25  //	 when the comment spans multiple lines; if such a comment is just two lines, formatting is
		26  //	 not idempotent
		27  // - formatting of expression lists
		28  // - should use blank instead of tab to separate one-line function bodies from
		29  //	 the function header unless there is a group of consecutive one-liners
		30  
		31  // ----------------------------------------------------------------------------
		32  // Common AST nodes.
		33  
		34  // Print as many newlines as necessary (but at least min newlines) to get to
		35  // the current line. ws is printed before the first line break. If newSection
		36  // is set, the first line break is printed as formfeed. Returns 0 if no line
		37  // breaks were printed, returns 1 if there was exactly one newline printed,
		38  // and returns a value > 1 if there was a formfeed or more than one newline
		39  // printed.
		40  //
		41  // TODO(gri): linebreak may add too many lines if the next statement at "line"
		42  //						is preceded by comments because the computation of n assumes
		43  //						the current position before the comment and the target position
		44  //						after the comment. Thus, after interspersing such comments, the
		45  //						space taken up by them is not considered to reduce the number of
		46  //						linebreaks. At the moment there is no easy way to know about
		47  //						future (not yet interspersed) comments in this function.
		48  //
		49  func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (nbreaks int) {
		50  	n := nlimit(line - p.pos.Line)
		51  	if n < min {
		52  		n = min
		53  	}
		54  	if n > 0 {
		55  		p.print(ws)
		56  		if newSection {
		57  			p.print(formfeed)
		58  			n--
		59  			nbreaks = 2
		60  		}
		61  		nbreaks += n
		62  		for ; n > 0; n-- {
		63  			p.print(newline)
		64  		}
		65  	}
		66  	return
		67  }
		68  
		69  // setComment sets g as the next comment if g != nil and if node comments
		70  // are enabled - this mode is used when printing source code fragments such
		71  // as exports only. It assumes that there is no pending comment in p.comments
		72  // and at most one pending comment in the p.comment cache.
		73  func (p *printer) setComment(g *ast.CommentGroup) {
		74  	if g == nil || !p.useNodeComments {
		75  		return
		76  	}
		77  	if p.comments == nil {
		78  		// initialize p.comments lazily
		79  		p.comments = make([]*ast.CommentGroup, 1)
		80  	} else if p.cindex < len(p.comments) {
		81  		// for some reason there are pending comments; this
		82  		// should never happen - handle gracefully and flush
		83  		// all comments up to g, ignore anything after that
		84  		p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL)
		85  		p.comments = p.comments[0:1]
		86  		// in debug mode, report error
		87  		p.internalError("setComment found pending comments")
		88  	}
		89  	p.comments[0] = g
		90  	p.cindex = 0
		91  	// don't overwrite any pending comment in the p.comment cache
		92  	// (there may be a pending comment when a line comment is
		93  	// immediately followed by a lead comment with no other
		94  	// tokens between)
		95  	if p.commentOffset == infinity {
		96  		p.nextComment() // get comment ready for use
		97  	}
		98  }
		99  
	 100  type exprListMode uint
	 101  
	 102  const (
	 103  	commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma
	 104  	noIndent													 // no extra indentation in multi-line lists
	 105  )
	 106  
	 107  // If indent is set, a multi-line identifier list is indented after the
	 108  // first linebreak encountered.
	 109  func (p *printer) identList(list []*ast.Ident, indent bool) {
	 110  	// convert into an expression list so we can re-use exprList formatting
	 111  	xlist := make([]ast.Expr, len(list))
	 112  	for i, x := range list {
	 113  		xlist[i] = x
	 114  	}
	 115  	var mode exprListMode
	 116  	if !indent {
	 117  		mode = noIndent
	 118  	}
	 119  	p.exprList(token.NoPos, xlist, 1, mode, token.NoPos, false)
	 120  }
	 121  
	 122  const filteredMsg = "contains filtered or unexported fields"
	 123  
	 124  // Print a list of expressions. If the list spans multiple
	 125  // source lines, the original line breaks are respected between
	 126  // expressions.
	 127  //
	 128  // TODO(gri) Consider rewriting this to be independent of []ast.Expr
	 129  //					 so that we can use the algorithm for any kind of list
	 130  //					 (e.g., pass list via a channel over which to range).
	 131  func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos, isIncomplete bool) {
	 132  	if len(list) == 0 {
	 133  		if isIncomplete {
	 134  			prev := p.posFor(prev0)
	 135  			next := p.posFor(next0)
	 136  			if prev.IsValid() && prev.Line == next.Line {
	 137  				p.print("/* " + filteredMsg + " */")
	 138  			} else {
	 139  				p.print(newline)
	 140  				p.print(indent, "// "+filteredMsg, unindent, newline)
	 141  			}
	 142  		}
	 143  		return
	 144  	}
	 145  
	 146  	prev := p.posFor(prev0)
	 147  	next := p.posFor(next0)
	 148  	line := p.lineFor(list[0].Pos())
	 149  	endLine := p.lineFor(list[len(list)-1].End())
	 150  
	 151  	if prev.IsValid() && prev.Line == line && line == endLine {
	 152  		// all list entries on a single line
	 153  		for i, x := range list {
	 154  			if i > 0 {
	 155  				// use position of expression following the comma as
	 156  				// comma position for correct comment placement
	 157  				p.print(x.Pos(), token.COMMA, blank)
	 158  			}
	 159  			p.expr0(x, depth)
	 160  		}
	 161  		if isIncomplete {
	 162  			p.print(token.COMMA, blank, "/* "+filteredMsg+" */")
	 163  		}
	 164  		return
	 165  	}
	 166  
	 167  	// list entries span multiple lines;
	 168  	// use source code positions to guide line breaks
	 169  
	 170  	// Don't add extra indentation if noIndent is set;
	 171  	// i.e., pretend that the first line is already indented.
	 172  	ws := ignore
	 173  	if mode&noIndent == 0 {
	 174  		ws = indent
	 175  	}
	 176  
	 177  	// The first linebreak is always a formfeed since this section must not
	 178  	// depend on any previous formatting.
	 179  	prevBreak := -1 // index of last expression that was followed by a linebreak
	 180  	if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) > 0 {
	 181  		ws = ignore
	 182  		prevBreak = 0
	 183  	}
	 184  
	 185  	// initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line
	 186  	size := 0
	 187  
	 188  	// We use the ratio between the geometric mean of the previous key sizes and
	 189  	// the current size to determine if there should be a break in the alignment.
	 190  	// To compute the geometric mean we accumulate the ln(size) values (lnsum)
	 191  	// and the number of sizes included (count).
	 192  	lnsum := 0.0
	 193  	count := 0
	 194  
	 195  	// print all list elements
	 196  	prevLine := prev.Line
	 197  	for i, x := range list {
	 198  		line = p.lineFor(x.Pos())
	 199  
	 200  		// Determine if the next linebreak, if any, needs to use formfeed:
	 201  		// in general, use the entire node size to make the decision; for
	 202  		// key:value expressions, use the key size.
	 203  		// TODO(gri) for a better result, should probably incorporate both
	 204  		//					 the key and the node size into the decision process
	 205  		useFF := true
	 206  
	 207  		// Determine element size: All bets are off if we don't have
	 208  		// position information for the previous and next token (likely
	 209  		// generated code - simply ignore the size in this case by setting
	 210  		// it to 0).
	 211  		prevSize := size
	 212  		const infinity = 1e6 // larger than any source line
	 213  		size = p.nodeSize(x, infinity)
	 214  		pair, isPair := x.(*ast.KeyValueExpr)
	 215  		if size <= infinity && prev.IsValid() && next.IsValid() {
	 216  			// x fits on a single line
	 217  			if isPair {
	 218  				size = p.nodeSize(pair.Key, infinity) // size <= infinity
	 219  			}
	 220  		} else {
	 221  			// size too large or we don't have good layout information
	 222  			size = 0
	 223  		}
	 224  
	 225  		// If the previous line and the current line had single-
	 226  		// line-expressions and the key sizes are small or the
	 227  		// ratio between the current key and the geometric mean
	 228  		// if the previous key sizes does not exceed a threshold,
	 229  		// align columns and do not use formfeed.
	 230  		if prevSize > 0 && size > 0 {
	 231  			const smallSize = 40
	 232  			if count == 0 || prevSize <= smallSize && size <= smallSize {
	 233  				useFF = false
	 234  			} else {
	 235  				const r = 2.5															 // threshold
	 236  				geomean := math.Exp(lnsum / float64(count)) // count > 0
	 237  				ratio := float64(size) / geomean
	 238  				useFF = r*ratio <= 1 || r <= ratio
	 239  			}
	 240  		}
	 241  
	 242  		needsLinebreak := 0 < prevLine && prevLine < line
	 243  		if i > 0 {
	 244  			// Use position of expression following the comma as
	 245  			// comma position for correct comment placement, but
	 246  			// only if the expression is on the same line.
	 247  			if !needsLinebreak {
	 248  				p.print(x.Pos())
	 249  			}
	 250  			p.print(token.COMMA)
	 251  			needsBlank := true
	 252  			if needsLinebreak {
	 253  				// Lines are broken using newlines so comments remain aligned
	 254  				// unless useFF is set or there are multiple expressions on
	 255  				// the same line in which case formfeed is used.
	 256  				nbreaks := p.linebreak(line, 0, ws, useFF || prevBreak+1 < i)
	 257  				if nbreaks > 0 {
	 258  					ws = ignore
	 259  					prevBreak = i
	 260  					needsBlank = false // we got a line break instead
	 261  				}
	 262  				// If there was a new section or more than one new line
	 263  				// (which means that the tabwriter will implicitly break
	 264  				// the section), reset the geomean variables since we are
	 265  				// starting a new group of elements with the next element.
	 266  				if nbreaks > 1 {
	 267  					lnsum = 0
	 268  					count = 0
	 269  				}
	 270  			}
	 271  			if needsBlank {
	 272  				p.print(blank)
	 273  			}
	 274  		}
	 275  
	 276  		if len(list) > 1 && isPair && size > 0 && needsLinebreak {
	 277  			// We have a key:value expression that fits onto one line
	 278  			// and it's not on the same line as the prior expression:
	 279  			// Use a column for the key such that consecutive entries
	 280  			// can align if possible.
	 281  			// (needsLinebreak is set if we started a new line before)
	 282  			p.expr(pair.Key)
	 283  			p.print(pair.Colon, token.COLON, vtab)
	 284  			p.expr(pair.Value)
	 285  		} else {
	 286  			p.expr0(x, depth)
	 287  		}
	 288  
	 289  		if size > 0 {
	 290  			lnsum += math.Log(float64(size))
	 291  			count++
	 292  		}
	 293  
	 294  		prevLine = line
	 295  	}
	 296  
	 297  	if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line {
	 298  		// Print a terminating comma if the next token is on a new line.
	 299  		p.print(token.COMMA)
	 300  		if isIncomplete {
	 301  			p.print(newline)
	 302  			p.print("// " + filteredMsg)
	 303  		}
	 304  		if ws == ignore && mode&noIndent == 0 {
	 305  			// unindent if we indented
	 306  			p.print(unindent)
	 307  		}
	 308  		p.print(formfeed) // terminating comma needs a line break to look good
	 309  		return
	 310  	}
	 311  
	 312  	if isIncomplete {
	 313  		p.print(token.COMMA, newline)
	 314  		p.print("// "+filteredMsg, newline)
	 315  	}
	 316  
	 317  	if ws == ignore && mode&noIndent == 0 {
	 318  		// unindent if we indented
	 319  		p.print(unindent)
	 320  	}
	 321  }
	 322  
	 323  func (p *printer) parameters(fields *ast.FieldList, isTypeParam bool) {
	 324  	openTok, closeTok := token.LPAREN, token.RPAREN
	 325  	if isTypeParam {
	 326  		openTok, closeTok = token.LBRACK, token.RBRACK
	 327  	}
	 328  	p.print(fields.Opening, openTok)
	 329  	if len(fields.List) > 0 {
	 330  		prevLine := p.lineFor(fields.Opening)
	 331  		ws := indent
	 332  		for i, par := range fields.List {
	 333  			// determine par begin and end line (may be different
	 334  			// if there are multiple parameter names for this par
	 335  			// or the type is on a separate line)
	 336  			parLineBeg := p.lineFor(par.Pos())
	 337  			parLineEnd := p.lineFor(par.End())
	 338  			// separating "," if needed
	 339  			needsLinebreak := 0 < prevLine && prevLine < parLineBeg
	 340  			if i > 0 {
	 341  				// use position of parameter following the comma as
	 342  				// comma position for correct comma placement, but
	 343  				// only if the next parameter is on the same line
	 344  				if !needsLinebreak {
	 345  					p.print(par.Pos())
	 346  				}
	 347  				p.print(token.COMMA)
	 348  			}
	 349  			// separator if needed (linebreak or blank)
	 350  			if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) > 0 {
	 351  				// break line if the opening "(" or previous parameter ended on a different line
	 352  				ws = ignore
	 353  			} else if i > 0 {
	 354  				p.print(blank)
	 355  			}
	 356  			// parameter names
	 357  			if len(par.Names) > 0 {
	 358  				// Very subtle: If we indented before (ws == ignore), identList
	 359  				// won't indent again. If we didn't (ws == indent), identList will
	 360  				// indent if the identList spans multiple lines, and it will outdent
	 361  				// again at the end (and still ws == indent). Thus, a subsequent indent
	 362  				// by a linebreak call after a type, or in the next multi-line identList
	 363  				// will do the right thing.
	 364  				p.identList(par.Names, ws == indent)
	 365  				p.print(blank)
	 366  			}
	 367  			// parameter type
	 368  			p.expr(stripParensAlways(par.Type))
	 369  			prevLine = parLineEnd
	 370  		}
	 371  		// if the closing ")" is on a separate line from the last parameter,
	 372  		// print an additional "," and line break
	 373  		if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing {
	 374  			p.print(token.COMMA)
	 375  			p.linebreak(closing, 0, ignore, true)
	 376  		}
	 377  		// unindent if we indented
	 378  		if ws == ignore {
	 379  			p.print(unindent)
	 380  		}
	 381  	}
	 382  	p.print(fields.Closing, closeTok)
	 383  }
	 384  
	 385  func (p *printer) signature(sig *ast.FuncType) {
	 386  	if tparams := typeparams.Get(sig); tparams != nil {
	 387  		p.parameters(tparams, true)
	 388  	}
	 389  	if sig.Params != nil {
	 390  		p.parameters(sig.Params, false)
	 391  	} else {
	 392  		p.print(token.LPAREN, token.RPAREN)
	 393  	}
	 394  	res := sig.Results
	 395  	n := res.NumFields()
	 396  	if n > 0 {
	 397  		// res != nil
	 398  		p.print(blank)
	 399  		if n == 1 && res.List[0].Names == nil {
	 400  			// single anonymous res; no ()'s
	 401  			p.expr(stripParensAlways(res.List[0].Type))
	 402  			return
	 403  		}
	 404  		p.parameters(res, false)
	 405  	}
	 406  }
	 407  
	 408  func identListSize(list []*ast.Ident, maxSize int) (size int) {
	 409  	for i, x := range list {
	 410  		if i > 0 {
	 411  			size += len(", ")
	 412  		}
	 413  		size += utf8.RuneCountInString(x.Name)
	 414  		if size >= maxSize {
	 415  			break
	 416  		}
	 417  	}
	 418  	return
	 419  }
	 420  
	 421  func (p *printer) isOneLineFieldList(list []*ast.Field) bool {
	 422  	if len(list) != 1 {
	 423  		return false // allow only one field
	 424  	}
	 425  	f := list[0]
	 426  	if f.Tag != nil || f.Comment != nil {
	 427  		return false // don't allow tags or comments
	 428  	}
	 429  	// only name(s) and type
	 430  	const maxSize = 30 // adjust as appropriate, this is an approximate value
	 431  	namesSize := identListSize(f.Names, maxSize)
	 432  	if namesSize > 0 {
	 433  		namesSize = 1 // blank between names and types
	 434  	}
	 435  	typeSize := p.nodeSize(f.Type, maxSize)
	 436  	return namesSize+typeSize <= maxSize
	 437  }
	 438  
	 439  func (p *printer) setLineComment(text string) {
	 440  	p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}})
	 441  }
	 442  
	 443  func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) {
	 444  	lbrace := fields.Opening
	 445  	list := fields.List
	 446  	rbrace := fields.Closing
	 447  	hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace))
	 448  	srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace)
	 449  
	 450  	if !hasComments && srcIsOneLine {
	 451  		// possibly a one-line struct/interface
	 452  		if len(list) == 0 {
	 453  			// no blank between keyword and {} in this case
	 454  			p.print(lbrace, token.LBRACE, rbrace, token.RBRACE)
	 455  			return
	 456  		} else if p.isOneLineFieldList(list) {
	 457  			// small enough - print on one line
	 458  			// (don't use identList and ignore source line breaks)
	 459  			p.print(lbrace, token.LBRACE, blank)
	 460  			f := list[0]
	 461  			if isStruct {
	 462  				for i, x := range f.Names {
	 463  					if i > 0 {
	 464  						// no comments so no need for comma position
	 465  						p.print(token.COMMA, blank)
	 466  					}
	 467  					p.expr(x)
	 468  				}
	 469  				if len(f.Names) > 0 {
	 470  					p.print(blank)
	 471  				}
	 472  				p.expr(f.Type)
	 473  			} else { // interface
	 474  				if len(f.Names) > 0 {
	 475  					// type list type or method
	 476  					name := f.Names[0] // "type" or method name
	 477  					p.expr(name)
	 478  					if name.Name == "type" {
	 479  						// type list type
	 480  						p.print(blank)
	 481  						p.expr(f.Type)
	 482  					} else {
	 483  						// method
	 484  						p.signature(f.Type.(*ast.FuncType)) // don't print "func"
	 485  					}
	 486  				} else {
	 487  					// embedded interface
	 488  					p.expr(f.Type)
	 489  				}
	 490  			}
	 491  			p.print(blank, rbrace, token.RBRACE)
	 492  			return
	 493  		}
	 494  	}
	 495  	// hasComments || !srcIsOneLine
	 496  
	 497  	p.print(blank, lbrace, token.LBRACE, indent)
	 498  	if hasComments || len(list) > 0 {
	 499  		p.print(formfeed)
	 500  	}
	 501  
	 502  	if isStruct {
	 503  
	 504  		sep := vtab
	 505  		if len(list) == 1 {
	 506  			sep = blank
	 507  		}
	 508  		var line int
	 509  		for i, f := range list {
	 510  			if i > 0 {
	 511  				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
	 512  			}
	 513  			extraTabs := 0
	 514  			p.setComment(f.Doc)
	 515  			p.recordLine(&line)
	 516  			if len(f.Names) > 0 {
	 517  				// named fields
	 518  				p.identList(f.Names, false)
	 519  				p.print(sep)
	 520  				p.expr(f.Type)
	 521  				extraTabs = 1
	 522  			} else {
	 523  				// anonymous field
	 524  				p.expr(f.Type)
	 525  				extraTabs = 2
	 526  			}
	 527  			if f.Tag != nil {
	 528  				if len(f.Names) > 0 && sep == vtab {
	 529  					p.print(sep)
	 530  				}
	 531  				p.print(sep)
	 532  				p.expr(f.Tag)
	 533  				extraTabs = 0
	 534  			}
	 535  			if f.Comment != nil {
	 536  				for ; extraTabs > 0; extraTabs-- {
	 537  					p.print(sep)
	 538  				}
	 539  				p.setComment(f.Comment)
	 540  			}
	 541  		}
	 542  		if isIncomplete {
	 543  			if len(list) > 0 {
	 544  				p.print(formfeed)
	 545  			}
	 546  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
	 547  			p.setLineComment("// " + filteredMsg)
	 548  		}
	 549  
	 550  	} else { // interface
	 551  
	 552  		var line int
	 553  		var prev *ast.Ident // previous "type" identifier
	 554  		for i, f := range list {
	 555  			var name *ast.Ident // first name, or nil
	 556  			if len(f.Names) > 0 {
	 557  				name = f.Names[0]
	 558  			}
	 559  			if i > 0 {
	 560  				// don't do a line break (min == 0) if we are printing a list of types
	 561  				// TODO(gri) this doesn't work quite right if the list of types is
	 562  				//					 spread across multiple lines
	 563  				min := 1
	 564  				if prev != nil && name == prev {
	 565  					min = 0
	 566  				}
	 567  				p.linebreak(p.lineFor(f.Pos()), min, ignore, p.linesFrom(line) > 0)
	 568  			}
	 569  			p.setComment(f.Doc)
	 570  			p.recordLine(&line)
	 571  			if name != nil {
	 572  				// type list type or method
	 573  				if name.Name == "type" {
	 574  					// type list type
	 575  					if name == prev {
	 576  						// type is part of a list of types
	 577  						p.print(token.COMMA, blank)
	 578  					} else {
	 579  						// type starts a new list of types
	 580  						p.print(name, blank)
	 581  					}
	 582  					p.expr(f.Type)
	 583  					prev = name
	 584  				} else {
	 585  					// method
	 586  					p.expr(name)
	 587  					p.signature(f.Type.(*ast.FuncType)) // don't print "func"
	 588  					prev = nil
	 589  				}
	 590  			} else {
	 591  				// embedded interface
	 592  				p.expr(f.Type)
	 593  				prev = nil
	 594  			}
	 595  			p.setComment(f.Comment)
	 596  		}
	 597  		if isIncomplete {
	 598  			if len(list) > 0 {
	 599  				p.print(formfeed)
	 600  			}
	 601  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
	 602  			p.setLineComment("// contains filtered or unexported methods")
	 603  		}
	 604  
	 605  	}
	 606  	p.print(unindent, formfeed, rbrace, token.RBRACE)
	 607  }
	 608  
	 609  // ----------------------------------------------------------------------------
	 610  // Expressions
	 611  
	 612  func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) {
	 613  	switch e.Op.Precedence() {
	 614  	case 4:
	 615  		has4 = true
	 616  	case 5:
	 617  		has5 = true
	 618  	}
	 619  
	 620  	switch l := e.X.(type) {
	 621  	case *ast.BinaryExpr:
	 622  		if l.Op.Precedence() < e.Op.Precedence() {
	 623  			// parens will be inserted.
	 624  			// pretend this is an *ast.ParenExpr and do nothing.
	 625  			break
	 626  		}
	 627  		h4, h5, mp := walkBinary(l)
	 628  		has4 = has4 || h4
	 629  		has5 = has5 || h5
	 630  		if maxProblem < mp {
	 631  			maxProblem = mp
	 632  		}
	 633  	}
	 634  
	 635  	switch r := e.Y.(type) {
	 636  	case *ast.BinaryExpr:
	 637  		if r.Op.Precedence() <= e.Op.Precedence() {
	 638  			// parens will be inserted.
	 639  			// pretend this is an *ast.ParenExpr and do nothing.
	 640  			break
	 641  		}
	 642  		h4, h5, mp := walkBinary(r)
	 643  		has4 = has4 || h4
	 644  		has5 = has5 || h5
	 645  		if maxProblem < mp {
	 646  			maxProblem = mp
	 647  		}
	 648  
	 649  	case *ast.StarExpr:
	 650  		if e.Op == token.QUO { // `*/`
	 651  			maxProblem = 5
	 652  		}
	 653  
	 654  	case *ast.UnaryExpr:
	 655  		switch e.Op.String() + r.Op.String() {
	 656  		case "/*", "&&", "&^":
	 657  			maxProblem = 5
	 658  		case "++", "--":
	 659  			if maxProblem < 4 {
	 660  				maxProblem = 4
	 661  			}
	 662  		}
	 663  	}
	 664  	return
	 665  }
	 666  
	 667  func cutoff(e *ast.BinaryExpr, depth int) int {
	 668  	has4, has5, maxProblem := walkBinary(e)
	 669  	if maxProblem > 0 {
	 670  		return maxProblem + 1
	 671  	}
	 672  	if has4 && has5 {
	 673  		if depth == 1 {
	 674  			return 5
	 675  		}
	 676  		return 4
	 677  	}
	 678  	if depth == 1 {
	 679  		return 6
	 680  	}
	 681  	return 4
	 682  }
	 683  
	 684  func diffPrec(expr ast.Expr, prec int) int {
	 685  	x, ok := expr.(*ast.BinaryExpr)
	 686  	if !ok || prec != x.Op.Precedence() {
	 687  		return 1
	 688  	}
	 689  	return 0
	 690  }
	 691  
	 692  func reduceDepth(depth int) int {
	 693  	depth--
	 694  	if depth < 1 {
	 695  		depth = 1
	 696  	}
	 697  	return depth
	 698  }
	 699  
	 700  // Format the binary expression: decide the cutoff and then format.
	 701  // Let's call depth == 1 Normal mode, and depth > 1 Compact mode.
	 702  // (Algorithm suggestion by Russ Cox.)
	 703  //
	 704  // The precedences are:
	 705  //	5						 *	/	%	<<	>>	&	&^
	 706  //	4						 +	-	|	^
	 707  //	3						 ==	!=	<	<=	>	>=
	 708  //	2						 &&
	 709  //	1						 ||
	 710  //
	 711  // The only decision is whether there will be spaces around levels 4 and 5.
	 712  // There are never spaces at level 6 (unary), and always spaces at levels 3 and below.
	 713  //
	 714  // To choose the cutoff, look at the whole expression but excluding primary
	 715  // expressions (function calls, parenthesized exprs), and apply these rules:
	 716  //
	 717  //	1) If there is a binary operator with a right side unary operand
	 718  //		 that would clash without a space, the cutoff must be (in order):
	 719  //
	 720  //		/*	6
	 721  //		&&	6
	 722  //		&^	6
	 723  //		++	5
	 724  //		--	5
	 725  //
	 726  //				 (Comparison operators always have spaces around them.)
	 727  //
	 728  //	2) If there is a mix of level 5 and level 4 operators, then the cutoff
	 729  //		 is 5 (use spaces to distinguish precedence) in Normal mode
	 730  //		 and 4 (never use spaces) in Compact mode.
	 731  //
	 732  //	3) If there are no level 4 operators or no level 5 operators, then the
	 733  //		 cutoff is 6 (always use spaces) in Normal mode
	 734  //		 and 4 (never use spaces) in Compact mode.
	 735  //
	 736  func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) {
	 737  	prec := x.Op.Precedence()
	 738  	if prec < prec1 {
	 739  		// parenthesis needed
	 740  		// Note: The parser inserts an ast.ParenExpr node; thus this case
	 741  		//			 can only occur if the AST is created in a different way.
	 742  		p.print(token.LPAREN)
	 743  		p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth
	 744  		p.print(token.RPAREN)
	 745  		return
	 746  	}
	 747  
	 748  	printBlank := prec < cutoff
	 749  
	 750  	ws := indent
	 751  	p.expr1(x.X, prec, depth+diffPrec(x.X, prec))
	 752  	if printBlank {
	 753  		p.print(blank)
	 754  	}
	 755  	xline := p.pos.Line // before the operator (it may be on the next line!)
	 756  	yline := p.lineFor(x.Y.Pos())
	 757  	p.print(x.OpPos, x.Op)
	 758  	if xline != yline && xline > 0 && yline > 0 {
	 759  		// at least one line break, but respect an extra empty line
	 760  		// in the source
	 761  		if p.linebreak(yline, 1, ws, true) > 0 {
	 762  			ws = ignore
	 763  			printBlank = false // no blank after line break
	 764  		}
	 765  	}
	 766  	if printBlank {
	 767  		p.print(blank)
	 768  	}
	 769  	p.expr1(x.Y, prec+1, depth+1)
	 770  	if ws == ignore {
	 771  		p.print(unindent)
	 772  	}
	 773  }
	 774  
	 775  func isBinary(expr ast.Expr) bool {
	 776  	_, ok := expr.(*ast.BinaryExpr)
	 777  	return ok
	 778  }
	 779  
	 780  func (p *printer) expr1(expr ast.Expr, prec1, depth int) {
	 781  	p.print(expr.Pos())
	 782  
	 783  	switch x := expr.(type) {
	 784  	case *ast.BadExpr:
	 785  		p.print("BadExpr")
	 786  
	 787  	case *ast.Ident:
	 788  		p.print(x)
	 789  
	 790  	case *ast.BinaryExpr:
	 791  		if depth < 1 {
	 792  			p.internalError("depth < 1:", depth)
	 793  			depth = 1
	 794  		}
	 795  		p.binaryExpr(x, prec1, cutoff(x, depth), depth)
	 796  
	 797  	case *ast.KeyValueExpr:
	 798  		p.expr(x.Key)
	 799  		p.print(x.Colon, token.COLON, blank)
	 800  		p.expr(x.Value)
	 801  
	 802  	case *ast.StarExpr:
	 803  		const prec = token.UnaryPrec
	 804  		if prec < prec1 {
	 805  			// parenthesis needed
	 806  			p.print(token.LPAREN)
	 807  			p.print(token.MUL)
	 808  			p.expr(x.X)
	 809  			p.print(token.RPAREN)
	 810  		} else {
	 811  			// no parenthesis needed
	 812  			p.print(token.MUL)
	 813  			p.expr(x.X)
	 814  		}
	 815  
	 816  	case *ast.UnaryExpr:
	 817  		const prec = token.UnaryPrec
	 818  		if prec < prec1 {
	 819  			// parenthesis needed
	 820  			p.print(token.LPAREN)
	 821  			p.expr(x)
	 822  			p.print(token.RPAREN)
	 823  		} else {
	 824  			// no parenthesis needed
	 825  			p.print(x.Op)
	 826  			if x.Op == token.RANGE {
	 827  				// TODO(gri) Remove this code if it cannot be reached.
	 828  				p.print(blank)
	 829  			}
	 830  			p.expr1(x.X, prec, depth)
	 831  		}
	 832  
	 833  	case *ast.BasicLit:
	 834  		if p.Config.Mode&normalizeNumbers != 0 {
	 835  			x = normalizedNumber(x)
	 836  		}
	 837  		p.print(x)
	 838  
	 839  	case *ast.FuncLit:
	 840  		p.print(x.Type.Pos(), token.FUNC)
	 841  		// See the comment in funcDecl about how the header size is computed.
	 842  		startCol := p.out.Column - len("func")
	 843  		p.signature(x.Type)
	 844  		p.funcBody(p.distanceFrom(x.Type.Pos(), startCol), blank, x.Body)
	 845  
	 846  	case *ast.ParenExpr:
	 847  		if _, hasParens := x.X.(*ast.ParenExpr); hasParens {
	 848  			// don't print parentheses around an already parenthesized expression
	 849  			// TODO(gri) consider making this more general and incorporate precedence levels
	 850  			p.expr0(x.X, depth)
	 851  		} else {
	 852  			p.print(token.LPAREN)
	 853  			p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth
	 854  			p.print(x.Rparen, token.RPAREN)
	 855  		}
	 856  
	 857  	case *ast.SelectorExpr:
	 858  		p.selectorExpr(x, depth, false)
	 859  
	 860  	case *ast.TypeAssertExpr:
	 861  		p.expr1(x.X, token.HighestPrec, depth)
	 862  		p.print(token.PERIOD, x.Lparen, token.LPAREN)
	 863  		if x.Type != nil {
	 864  			p.expr(x.Type)
	 865  		} else {
	 866  			p.print(token.TYPE)
	 867  		}
	 868  		p.print(x.Rparen, token.RPAREN)
	 869  
	 870  	case *ast.IndexExpr:
	 871  		// TODO(gri): should treat[] like parentheses and undo one level of depth
	 872  		p.expr1(x.X, token.HighestPrec, 1)
	 873  		p.print(x.Lbrack, token.LBRACK)
	 874  		// Note: we're a bit defensive here to handle the case of a ListExpr of
	 875  		// length 1.
	 876  		if list := typeparams.UnpackExpr(x.Index); len(list) > 0 {
	 877  			if len(list) > 1 {
	 878  				p.exprList(x.Lbrack, list, depth+1, commaTerm, x.Rbrack, false)
	 879  			} else {
	 880  				p.expr0(list[0], depth+1)
	 881  			}
	 882  		} else {
	 883  			p.expr0(x.Index, depth+1)
	 884  		}
	 885  		p.print(x.Rbrack, token.RBRACK)
	 886  
	 887  	case *ast.SliceExpr:
	 888  		// TODO(gri): should treat[] like parentheses and undo one level of depth
	 889  		p.expr1(x.X, token.HighestPrec, 1)
	 890  		p.print(x.Lbrack, token.LBRACK)
	 891  		indices := []ast.Expr{x.Low, x.High}
	 892  		if x.Max != nil {
	 893  			indices = append(indices, x.Max)
	 894  		}
	 895  		// determine if we need extra blanks around ':'
	 896  		var needsBlanks bool
	 897  		if depth <= 1 {
	 898  			var indexCount int
	 899  			var hasBinaries bool
	 900  			for _, x := range indices {
	 901  				if x != nil {
	 902  					indexCount++
	 903  					if isBinary(x) {
	 904  						hasBinaries = true
	 905  					}
	 906  				}
	 907  			}
	 908  			if indexCount > 1 && hasBinaries {
	 909  				needsBlanks = true
	 910  			}
	 911  		}
	 912  		for i, x := range indices {
	 913  			if i > 0 {
	 914  				if indices[i-1] != nil && needsBlanks {
	 915  					p.print(blank)
	 916  				}
	 917  				p.print(token.COLON)
	 918  				if x != nil && needsBlanks {
	 919  					p.print(blank)
	 920  				}
	 921  			}
	 922  			if x != nil {
	 923  				p.expr0(x, depth+1)
	 924  			}
	 925  		}
	 926  		p.print(x.Rbrack, token.RBRACK)
	 927  
	 928  	case *ast.CallExpr:
	 929  		if len(x.Args) > 1 {
	 930  			depth++
	 931  		}
	 932  		var wasIndented bool
	 933  		if _, ok := x.Fun.(*ast.FuncType); ok {
	 934  			// conversions to literal function types require parentheses around the type
	 935  			p.print(token.LPAREN)
	 936  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
	 937  			p.print(token.RPAREN)
	 938  		} else {
	 939  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
	 940  		}
	 941  		p.print(x.Lparen, token.LPAREN)
	 942  		if x.Ellipsis.IsValid() {
	 943  			p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis, false)
	 944  			p.print(x.Ellipsis, token.ELLIPSIS)
	 945  			if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) {
	 946  				p.print(token.COMMA, formfeed)
	 947  			}
	 948  		} else {
	 949  			p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen, false)
	 950  		}
	 951  		p.print(x.Rparen, token.RPAREN)
	 952  		if wasIndented {
	 953  			p.print(unindent)
	 954  		}
	 955  
	 956  	case *ast.CompositeLit:
	 957  		// composite literal elements that are composite literals themselves may have the type omitted
	 958  		if x.Type != nil {
	 959  			p.expr1(x.Type, token.HighestPrec, depth)
	 960  		}
	 961  		p.level++
	 962  		p.print(x.Lbrace, token.LBRACE)
	 963  		p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace, x.Incomplete)
	 964  		// do not insert extra line break following a /*-style comment
	 965  		// before the closing '}' as it might break the code if there
	 966  		// is no trailing ','
	 967  		mode := noExtraLinebreak
	 968  		// do not insert extra blank following a /*-style comment
	 969  		// before the closing '}' unless the literal is empty
	 970  		if len(x.Elts) > 0 {
	 971  			mode |= noExtraBlank
	 972  		}
	 973  		// need the initial indent to print lone comments with
	 974  		// the proper level of indentation
	 975  		p.print(indent, unindent, mode, x.Rbrace, token.RBRACE, mode)
	 976  		p.level--
	 977  
	 978  	case *ast.Ellipsis:
	 979  		p.print(token.ELLIPSIS)
	 980  		if x.Elt != nil {
	 981  			p.expr(x.Elt)
	 982  		}
	 983  
	 984  	case *ast.ArrayType:
	 985  		p.print(token.LBRACK)
	 986  		if x.Len != nil {
	 987  			p.expr(x.Len)
	 988  		}
	 989  		p.print(token.RBRACK)
	 990  		p.expr(x.Elt)
	 991  
	 992  	case *ast.StructType:
	 993  		p.print(token.STRUCT)
	 994  		p.fieldList(x.Fields, true, x.Incomplete)
	 995  
	 996  	case *ast.FuncType:
	 997  		p.print(token.FUNC)
	 998  		p.signature(x)
	 999  
	1000  	case *ast.InterfaceType:
	1001  		p.print(token.INTERFACE)
	1002  		p.fieldList(x.Methods, false, x.Incomplete)
	1003  
	1004  	case *ast.MapType:
	1005  		p.print(token.MAP, token.LBRACK)
	1006  		p.expr(x.Key)
	1007  		p.print(token.RBRACK)
	1008  		p.expr(x.Value)
	1009  
	1010  	case *ast.ChanType:
	1011  		switch x.Dir {
	1012  		case ast.SEND | ast.RECV:
	1013  			p.print(token.CHAN)
	1014  		case ast.RECV:
	1015  			p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same
	1016  		case ast.SEND:
	1017  			p.print(token.CHAN, x.Arrow, token.ARROW)
	1018  		}
	1019  		p.print(blank)
	1020  		p.expr(x.Value)
	1021  
	1022  	default:
	1023  		panic("unreachable")
	1024  	}
	1025  }
	1026  
	1027  // normalizedNumber rewrites base prefixes and exponents
	1028  // of numbers to use lower-case letters (0X123 to 0x123 and 1.2E3 to 1.2e3),
	1029  // and removes leading 0's from integer imaginary literals (0765i to 765i).
	1030  // It leaves hexadecimal digits alone.
	1031  //
	1032  // normalizedNumber doesn't modify the ast.BasicLit value lit points to.
	1033  // If lit is not a number or a number in canonical format already,
	1034  // lit is returned as is. Otherwise a new ast.BasicLit is created.
	1035  func normalizedNumber(lit *ast.BasicLit) *ast.BasicLit {
	1036  	if lit.Kind != token.INT && lit.Kind != token.FLOAT && lit.Kind != token.IMAG {
	1037  		return lit // not a number - nothing to do
	1038  	}
	1039  	if len(lit.Value) < 2 {
	1040  		return lit // only one digit (common case) - nothing to do
	1041  	}
	1042  	// len(lit.Value) >= 2
	1043  
	1044  	// We ignore lit.Kind because for lit.Kind == token.IMAG the literal may be an integer
	1045  	// or floating-point value, decimal or not. Instead, just consider the literal pattern.
	1046  	x := lit.Value
	1047  	switch x[:2] {
	1048  	default:
	1049  		// 0-prefix octal, decimal int, or float (possibly with 'i' suffix)
	1050  		if i := strings.LastIndexByte(x, 'E'); i >= 0 {
	1051  			x = x[:i] + "e" + x[i+1:]
	1052  			break
	1053  		}
	1054  		// remove leading 0's from integer (but not floating-point) imaginary literals
	1055  		if x[len(x)-1] == 'i' && strings.IndexByte(x, '.') < 0 && strings.IndexByte(x, 'e') < 0 {
	1056  			x = strings.TrimLeft(x, "0_")
	1057  			if x == "i" {
	1058  				x = "0i"
	1059  			}
	1060  		}
	1061  	case "0X":
	1062  		x = "0x" + x[2:]
	1063  		// possibly a hexadecimal float
	1064  		if i := strings.LastIndexByte(x, 'P'); i >= 0 {
	1065  			x = x[:i] + "p" + x[i+1:]
	1066  		}
	1067  	case "0x":
	1068  		// possibly a hexadecimal float
	1069  		i := strings.LastIndexByte(x, 'P')
	1070  		if i == -1 {
	1071  			return lit // nothing to do
	1072  		}
	1073  		x = x[:i] + "p" + x[i+1:]
	1074  	case "0O":
	1075  		x = "0o" + x[2:]
	1076  	case "0o":
	1077  		return lit // nothing to do
	1078  	case "0B":
	1079  		x = "0b" + x[2:]
	1080  	case "0b":
	1081  		return lit // nothing to do
	1082  	}
	1083  
	1084  	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: lit.Kind, Value: x}
	1085  }
	1086  
	1087  func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool {
	1088  	if x, ok := expr.(*ast.SelectorExpr); ok {
	1089  		return p.selectorExpr(x, depth, true)
	1090  	}
	1091  	p.expr1(expr, prec1, depth)
	1092  	return false
	1093  }
	1094  
	1095  // selectorExpr handles an *ast.SelectorExpr node and reports whether x spans
	1096  // multiple lines.
	1097  func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool {
	1098  	p.expr1(x.X, token.HighestPrec, depth)
	1099  	p.print(token.PERIOD)
	1100  	if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line {
	1101  		p.print(indent, newline, x.Sel.Pos(), x.Sel)
	1102  		if !isMethod {
	1103  			p.print(unindent)
	1104  		}
	1105  		return true
	1106  	}
	1107  	p.print(x.Sel.Pos(), x.Sel)
	1108  	return false
	1109  }
	1110  
	1111  func (p *printer) expr0(x ast.Expr, depth int) {
	1112  	p.expr1(x, token.LowestPrec, depth)
	1113  }
	1114  
	1115  func (p *printer) expr(x ast.Expr) {
	1116  	const depth = 1
	1117  	p.expr1(x, token.LowestPrec, depth)
	1118  }
	1119  
	1120  // ----------------------------------------------------------------------------
	1121  // Statements
	1122  
	1123  // Print the statement list indented, but without a newline after the last statement.
	1124  // Extra line breaks between statements in the source are respected but at most one
	1125  // empty line is printed between statements.
	1126  func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) {
	1127  	if nindent > 0 {
	1128  		p.print(indent)
	1129  	}
	1130  	var line int
	1131  	i := 0
	1132  	for _, s := range list {
	1133  		// ignore empty statements (was issue 3466)
	1134  		if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty {
	1135  			// nindent == 0 only for lists of switch/select case clauses;
	1136  			// in those cases each clause is a new section
	1137  			if len(p.output) > 0 {
	1138  				// only print line break if we are not at the beginning of the output
	1139  				// (i.e., we are not printing only a partial program)
	1140  				p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0)
	1141  			}
	1142  			p.recordLine(&line)
	1143  			p.stmt(s, nextIsRBrace && i == len(list)-1)
	1144  			// labeled statements put labels on a separate line, but here
	1145  			// we only care about the start line of the actual statement
	1146  			// without label - correct line for each label
	1147  			for t := s; ; {
	1148  				lt, _ := t.(*ast.LabeledStmt)
	1149  				if lt == nil {
	1150  					break
	1151  				}
	1152  				line++
	1153  				t = lt.Stmt
	1154  			}
	1155  			i++
	1156  		}
	1157  	}
	1158  	if nindent > 0 {
	1159  		p.print(unindent)
	1160  	}
	1161  }
	1162  
	1163  // block prints an *ast.BlockStmt; it always spans at least two lines.
	1164  func (p *printer) block(b *ast.BlockStmt, nindent int) {
	1165  	p.print(b.Lbrace, token.LBRACE)
	1166  	p.stmtList(b.List, nindent, true)
	1167  	p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true)
	1168  	p.print(b.Rbrace, token.RBRACE)
	1169  }
	1170  
	1171  func isTypeName(x ast.Expr) bool {
	1172  	switch t := x.(type) {
	1173  	case *ast.Ident:
	1174  		return true
	1175  	case *ast.SelectorExpr:
	1176  		return isTypeName(t.X)
	1177  	}
	1178  	return false
	1179  }
	1180  
	1181  func stripParens(x ast.Expr) ast.Expr {
	1182  	if px, strip := x.(*ast.ParenExpr); strip {
	1183  		// parentheses must not be stripped if there are any
	1184  		// unparenthesized composite literals starting with
	1185  		// a type name
	1186  		ast.Inspect(px.X, func(node ast.Node) bool {
	1187  			switch x := node.(type) {
	1188  			case *ast.ParenExpr:
	1189  				// parentheses protect enclosed composite literals
	1190  				return false
	1191  			case *ast.CompositeLit:
	1192  				if isTypeName(x.Type) {
	1193  					strip = false // do not strip parentheses
	1194  				}
	1195  				return false
	1196  			}
	1197  			// in all other cases, keep inspecting
	1198  			return true
	1199  		})
	1200  		if strip {
	1201  			return stripParens(px.X)
	1202  		}
	1203  	}
	1204  	return x
	1205  }
	1206  
	1207  func stripParensAlways(x ast.Expr) ast.Expr {
	1208  	if x, ok := x.(*ast.ParenExpr); ok {
	1209  		return stripParensAlways(x.X)
	1210  	}
	1211  	return x
	1212  }
	1213  
	1214  func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
	1215  	p.print(blank)
	1216  	needsBlank := false
	1217  	if init == nil && post == nil {
	1218  		// no semicolons required
	1219  		if expr != nil {
	1220  			p.expr(stripParens(expr))
	1221  			needsBlank = true
	1222  		}
	1223  	} else {
	1224  		// all semicolons required
	1225  		// (they are not separators, print them explicitly)
	1226  		if init != nil {
	1227  			p.stmt(init, false)
	1228  		}
	1229  		p.print(token.SEMICOLON, blank)
	1230  		if expr != nil {
	1231  			p.expr(stripParens(expr))
	1232  			needsBlank = true
	1233  		}
	1234  		if isForStmt {
	1235  			p.print(token.SEMICOLON, blank)
	1236  			needsBlank = false
	1237  			if post != nil {
	1238  				p.stmt(post, false)
	1239  				needsBlank = true
	1240  			}
	1241  		}
	1242  	}
	1243  	if needsBlank {
	1244  		p.print(blank)
	1245  	}
	1246  }
	1247  
	1248  // indentList reports whether an expression list would look better if it
	1249  // were indented wholesale (starting with the very first element, rather
	1250  // than starting at the first line break).
	1251  //
	1252  func (p *printer) indentList(list []ast.Expr) bool {
	1253  	// Heuristic: indentList reports whether there are more than one multi-
	1254  	// line element in the list, or if there is any element that is not
	1255  	// starting on the same line as the previous one ends.
	1256  	if len(list) >= 2 {
	1257  		var b = p.lineFor(list[0].Pos())
	1258  		var e = p.lineFor(list[len(list)-1].End())
	1259  		if 0 < b && b < e {
	1260  			// list spans multiple lines
	1261  			n := 0 // multi-line element count
	1262  			line := b
	1263  			for _, x := range list {
	1264  				xb := p.lineFor(x.Pos())
	1265  				xe := p.lineFor(x.End())
	1266  				if line < xb {
	1267  					// x is not starting on the same
	1268  					// line as the previous one ended
	1269  					return true
	1270  				}
	1271  				if xb < xe {
	1272  					// x is a multi-line element
	1273  					n++
	1274  				}
	1275  				line = xe
	1276  			}
	1277  			return n > 1
	1278  		}
	1279  	}
	1280  	return false
	1281  }
	1282  
	1283  func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) {
	1284  	p.print(stmt.Pos())
	1285  
	1286  	switch s := stmt.(type) {
	1287  	case *ast.BadStmt:
	1288  		p.print("BadStmt")
	1289  
	1290  	case *ast.DeclStmt:
	1291  		p.decl(s.Decl)
	1292  
	1293  	case *ast.EmptyStmt:
	1294  		// nothing to do
	1295  
	1296  	case *ast.LabeledStmt:
	1297  		// a "correcting" unindent immediately following a line break
	1298  		// is applied before the line break if there is no comment
	1299  		// between (see writeWhitespace)
	1300  		p.print(unindent)
	1301  		p.expr(s.Label)
	1302  		p.print(s.Colon, token.COLON, indent)
	1303  		if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty {
	1304  			if !nextIsRBrace {
	1305  				p.print(newline, e.Pos(), token.SEMICOLON)
	1306  				break
	1307  			}
	1308  		} else {
	1309  			p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true)
	1310  		}
	1311  		p.stmt(s.Stmt, nextIsRBrace)
	1312  
	1313  	case *ast.ExprStmt:
	1314  		const depth = 1
	1315  		p.expr0(s.X, depth)
	1316  
	1317  	case *ast.SendStmt:
	1318  		const depth = 1
	1319  		p.expr0(s.Chan, depth)
	1320  		p.print(blank, s.Arrow, token.ARROW, blank)
	1321  		p.expr0(s.Value, depth)
	1322  
	1323  	case *ast.IncDecStmt:
	1324  		const depth = 1
	1325  		p.expr0(s.X, depth+1)
	1326  		p.print(s.TokPos, s.Tok)
	1327  
	1328  	case *ast.AssignStmt:
	1329  		var depth = 1
	1330  		if len(s.Lhs) > 1 && len(s.Rhs) > 1 {
	1331  			depth++
	1332  		}
	1333  		p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos, false)
	1334  		p.print(blank, s.TokPos, s.Tok, blank)
	1335  		p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos, false)
	1336  
	1337  	case *ast.GoStmt:
	1338  		p.print(token.GO, blank)
	1339  		p.expr(s.Call)
	1340  
	1341  	case *ast.DeferStmt:
	1342  		p.print(token.DEFER, blank)
	1343  		p.expr(s.Call)
	1344  
	1345  	case *ast.ReturnStmt:
	1346  		p.print(token.RETURN)
	1347  		if s.Results != nil {
	1348  			p.print(blank)
	1349  			// Use indentList heuristic to make corner cases look
	1350  			// better (issue 1207). A more systematic approach would
	1351  			// always indent, but this would cause significant
	1352  			// reformatting of the code base and not necessarily
	1353  			// lead to more nicely formatted code in general.
	1354  			if p.indentList(s.Results) {
	1355  				p.print(indent)
	1356  				// Use NoPos so that a newline never goes before
	1357  				// the results (see issue #32854).
	1358  				p.exprList(token.NoPos, s.Results, 1, noIndent, token.NoPos, false)
	1359  				p.print(unindent)
	1360  			} else {
	1361  				p.exprList(token.NoPos, s.Results, 1, 0, token.NoPos, false)
	1362  			}
	1363  		}
	1364  
	1365  	case *ast.BranchStmt:
	1366  		p.print(s.Tok)
	1367  		if s.Label != nil {
	1368  			p.print(blank)
	1369  			p.expr(s.Label)
	1370  		}
	1371  
	1372  	case *ast.BlockStmt:
	1373  		p.block(s, 1)
	1374  
	1375  	case *ast.IfStmt:
	1376  		p.print(token.IF)
	1377  		p.controlClause(false, s.Init, s.Cond, nil)
	1378  		p.block(s.Body, 1)
	1379  		if s.Else != nil {
	1380  			p.print(blank, token.ELSE, blank)
	1381  			switch s.Else.(type) {
	1382  			case *ast.BlockStmt, *ast.IfStmt:
	1383  				p.stmt(s.Else, nextIsRBrace)
	1384  			default:
	1385  				// This can only happen with an incorrectly
	1386  				// constructed AST. Permit it but print so
	1387  				// that it can be parsed without errors.
	1388  				p.print(token.LBRACE, indent, formfeed)
	1389  				p.stmt(s.Else, true)
	1390  				p.print(unindent, formfeed, token.RBRACE)
	1391  			}
	1392  		}
	1393  
	1394  	case *ast.CaseClause:
	1395  		if s.List != nil {
	1396  			p.print(token.CASE, blank)
	1397  			p.exprList(s.Pos(), s.List, 1, 0, s.Colon, false)
	1398  		} else {
	1399  			p.print(token.DEFAULT)
	1400  		}
	1401  		p.print(s.Colon, token.COLON)
	1402  		p.stmtList(s.Body, 1, nextIsRBrace)
	1403  
	1404  	case *ast.SwitchStmt:
	1405  		p.print(token.SWITCH)
	1406  		p.controlClause(false, s.Init, s.Tag, nil)
	1407  		p.block(s.Body, 0)
	1408  
	1409  	case *ast.TypeSwitchStmt:
	1410  		p.print(token.SWITCH)
	1411  		if s.Init != nil {
	1412  			p.print(blank)
	1413  			p.stmt(s.Init, false)
	1414  			p.print(token.SEMICOLON)
	1415  		}
	1416  		p.print(blank)
	1417  		p.stmt(s.Assign, false)
	1418  		p.print(blank)
	1419  		p.block(s.Body, 0)
	1420  
	1421  	case *ast.CommClause:
	1422  		if s.Comm != nil {
	1423  			p.print(token.CASE, blank)
	1424  			p.stmt(s.Comm, false)
	1425  		} else {
	1426  			p.print(token.DEFAULT)
	1427  		}
	1428  		p.print(s.Colon, token.COLON)
	1429  		p.stmtList(s.Body, 1, nextIsRBrace)
	1430  
	1431  	case *ast.SelectStmt:
	1432  		p.print(token.SELECT, blank)
	1433  		body := s.Body
	1434  		if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) {
	1435  			// print empty select statement w/o comments on one line
	1436  			p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE)
	1437  		} else {
	1438  			p.block(body, 0)
	1439  		}
	1440  
	1441  	case *ast.ForStmt:
	1442  		p.print(token.FOR)
	1443  		p.controlClause(true, s.Init, s.Cond, s.Post)
	1444  		p.block(s.Body, 1)
	1445  
	1446  	case *ast.RangeStmt:
	1447  		p.print(token.FOR, blank)
	1448  		if s.Key != nil {
	1449  			p.expr(s.Key)
	1450  			if s.Value != nil {
	1451  				// use position of value following the comma as
	1452  				// comma position for correct comment placement
	1453  				p.print(s.Value.Pos(), token.COMMA, blank)
	1454  				p.expr(s.Value)
	1455  			}
	1456  			p.print(blank, s.TokPos, s.Tok, blank)
	1457  		}
	1458  		p.print(token.RANGE, blank)
	1459  		p.expr(stripParens(s.X))
	1460  		p.print(blank)
	1461  		p.block(s.Body, 1)
	1462  
	1463  	default:
	1464  		panic("unreachable")
	1465  	}
	1466  }
	1467  
	1468  // ----------------------------------------------------------------------------
	1469  // Declarations
	1470  
	1471  // The keepTypeColumn function determines if the type column of a series of
	1472  // consecutive const or var declarations must be kept, or if initialization
	1473  // values (V) can be placed in the type column (T) instead. The i'th entry
	1474  // in the result slice is true if the type column in spec[i] must be kept.
	1475  //
	1476  // For example, the declaration:
	1477  //
	1478  //	const (
	1479  //		foobar int = 42 // comment
	1480  //		x					= 7	// comment
	1481  //		foo
	1482  //							bar = 991
	1483  //	)
	1484  //
	1485  // leads to the type/values matrix below. A run of value columns (V) can
	1486  // be moved into the type column if there is no type for any of the values
	1487  // in that column (we only move entire columns so that they align properly).
	1488  //
	1489  //	matrix				formatted		 result
	1490  //										matrix
	1491  //	T	V		->		T	V		 ->	 true			there is a T and so the type
	1492  //	-	V					-	V					true			column must be kept
	1493  //	-	-					-	-					false
	1494  //	-	V					V	-					false		 V is moved into T column
	1495  //
	1496  func keepTypeColumn(specs []ast.Spec) []bool {
	1497  	m := make([]bool, len(specs))
	1498  
	1499  	populate := func(i, j int, keepType bool) {
	1500  		if keepType {
	1501  			for ; i < j; i++ {
	1502  				m[i] = true
	1503  			}
	1504  		}
	1505  	}
	1506  
	1507  	i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run
	1508  	var keepType bool
	1509  	for i, s := range specs {
	1510  		t := s.(*ast.ValueSpec)
	1511  		if t.Values != nil {
	1512  			if i0 < 0 {
	1513  				// start of a run of ValueSpecs with non-nil Values
	1514  				i0 = i
	1515  				keepType = false
	1516  			}
	1517  		} else {
	1518  			if i0 >= 0 {
	1519  				// end of a run
	1520  				populate(i0, i, keepType)
	1521  				i0 = -1
	1522  			}
	1523  		}
	1524  		if t.Type != nil {
	1525  			keepType = true
	1526  		}
	1527  	}
	1528  	if i0 >= 0 {
	1529  		// end of a run
	1530  		populate(i0, len(specs), keepType)
	1531  	}
	1532  
	1533  	return m
	1534  }
	1535  
	1536  func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) {
	1537  	p.setComment(s.Doc)
	1538  	p.identList(s.Names, false) // always present
	1539  	extraTabs := 3
	1540  	if s.Type != nil || keepType {
	1541  		p.print(vtab)
	1542  		extraTabs--
	1543  	}
	1544  	if s.Type != nil {
	1545  		p.expr(s.Type)
	1546  	}
	1547  	if s.Values != nil {
	1548  		p.print(vtab, token.ASSIGN, blank)
	1549  		p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false)
	1550  		extraTabs--
	1551  	}
	1552  	if s.Comment != nil {
	1553  		for ; extraTabs > 0; extraTabs-- {
	1554  			p.print(vtab)
	1555  		}
	1556  		p.setComment(s.Comment)
	1557  	}
	1558  }
	1559  
	1560  func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit {
	1561  	// Note: An unmodified AST generated by go/parser will already
	1562  	// contain a backward- or double-quoted path string that does
	1563  	// not contain any invalid characters, and most of the work
	1564  	// here is not needed. However, a modified or generated AST
	1565  	// may possibly contain non-canonical paths. Do the work in
	1566  	// all cases since it's not too hard and not speed-critical.
	1567  
	1568  	// if we don't have a proper string, be conservative and return whatever we have
	1569  	if lit.Kind != token.STRING {
	1570  		return lit
	1571  	}
	1572  	s, err := strconv.Unquote(lit.Value)
	1573  	if err != nil {
	1574  		return lit
	1575  	}
	1576  
	1577  	// if the string is an invalid path, return whatever we have
	1578  	//
	1579  	// spec: "Implementation restriction: A compiler may restrict
	1580  	// ImportPaths to non-empty strings using only characters belonging
	1581  	// to Unicode's L, M, N, P, and S general categories (the Graphic
	1582  	// characters without spaces) and may also exclude the characters
	1583  	// !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character
	1584  	// U+FFFD."
	1585  	if s == "" {
	1586  		return lit
	1587  	}
	1588  	const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
	1589  	for _, r := range s {
	1590  		if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
	1591  			return lit
	1592  		}
	1593  	}
	1594  
	1595  	// otherwise, return the double-quoted path
	1596  	s = strconv.Quote(s)
	1597  	if s == lit.Value {
	1598  		return lit // nothing wrong with lit
	1599  	}
	1600  	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s}
	1601  }
	1602  
	1603  // The parameter n is the number of specs in the group. If doIndent is set,
	1604  // multi-line identifier lists in the spec are indented when the first
	1605  // linebreak is encountered.
	1606  //
	1607  func (p *printer) spec(spec ast.Spec, n int, doIndent bool) {
	1608  	switch s := spec.(type) {
	1609  	case *ast.ImportSpec:
	1610  		p.setComment(s.Doc)
	1611  		if s.Name != nil {
	1612  			p.expr(s.Name)
	1613  			p.print(blank)
	1614  		}
	1615  		p.expr(sanitizeImportPath(s.Path))
	1616  		p.setComment(s.Comment)
	1617  		p.print(s.EndPos)
	1618  
	1619  	case *ast.ValueSpec:
	1620  		if n != 1 {
	1621  			p.internalError("expected n = 1; got", n)
	1622  		}
	1623  		p.setComment(s.Doc)
	1624  		p.identList(s.Names, doIndent) // always present
	1625  		if s.Type != nil {
	1626  			p.print(blank)
	1627  			p.expr(s.Type)
	1628  		}
	1629  		if s.Values != nil {
	1630  			p.print(blank, token.ASSIGN, blank)
	1631  			p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false)
	1632  		}
	1633  		p.setComment(s.Comment)
	1634  
	1635  	case *ast.TypeSpec:
	1636  		p.setComment(s.Doc)
	1637  		p.expr(s.Name)
	1638  		if tparams := typeparams.Get(s); tparams != nil {
	1639  			p.parameters(tparams, true)
	1640  		}
	1641  		if n == 1 {
	1642  			p.print(blank)
	1643  		} else {
	1644  			p.print(vtab)
	1645  		}
	1646  		if s.Assign.IsValid() {
	1647  			p.print(token.ASSIGN, blank)
	1648  		}
	1649  		p.expr(s.Type)
	1650  		p.setComment(s.Comment)
	1651  
	1652  	default:
	1653  		panic("unreachable")
	1654  	}
	1655  }
	1656  
	1657  func (p *printer) genDecl(d *ast.GenDecl) {
	1658  	p.setComment(d.Doc)
	1659  	p.print(d.Pos(), d.Tok, blank)
	1660  
	1661  	if d.Lparen.IsValid() || len(d.Specs) > 1 {
	1662  		// group of parenthesized declarations
	1663  		p.print(d.Lparen, token.LPAREN)
	1664  		if n := len(d.Specs); n > 0 {
	1665  			p.print(indent, formfeed)
	1666  			if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) {
	1667  				// two or more grouped const/var declarations:
	1668  				// determine if the type column must be kept
	1669  				keepType := keepTypeColumn(d.Specs)
	1670  				var line int
	1671  				for i, s := range d.Specs {
	1672  					if i > 0 {
	1673  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
	1674  					}
	1675  					p.recordLine(&line)
	1676  					p.valueSpec(s.(*ast.ValueSpec), keepType[i])
	1677  				}
	1678  			} else {
	1679  				var line int
	1680  				for i, s := range d.Specs {
	1681  					if i > 0 {
	1682  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
	1683  					}
	1684  					p.recordLine(&line)
	1685  					p.spec(s, n, false)
	1686  				}
	1687  			}
	1688  			p.print(unindent, formfeed)
	1689  		}
	1690  		p.print(d.Rparen, token.RPAREN)
	1691  
	1692  	} else if len(d.Specs) > 0 {
	1693  		// single declaration
	1694  		p.spec(d.Specs[0], 1, true)
	1695  	}
	1696  }
	1697  
	1698  // nodeSize determines the size of n in chars after formatting.
	1699  // The result is <= maxSize if the node fits on one line with at
	1700  // most maxSize chars and the formatted output doesn't contain
	1701  // any control chars. Otherwise, the result is > maxSize.
	1702  //
	1703  func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) {
	1704  	// nodeSize invokes the printer, which may invoke nodeSize
	1705  	// recursively. For deep composite literal nests, this can
	1706  	// lead to an exponential algorithm. Remember previous
	1707  	// results to prune the recursion (was issue 1628).
	1708  	if size, found := p.nodeSizes[n]; found {
	1709  		return size
	1710  	}
	1711  
	1712  	size = maxSize + 1 // assume n doesn't fit
	1713  	p.nodeSizes[n] = size
	1714  
	1715  	// nodeSize computation must be independent of particular
	1716  	// style so that we always get the same decision; print
	1717  	// in RawFormat
	1718  	cfg := Config{Mode: RawFormat}
	1719  	var buf bytes.Buffer
	1720  	if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil {
	1721  		return
	1722  	}
	1723  	if buf.Len() <= maxSize {
	1724  		for _, ch := range buf.Bytes() {
	1725  			if ch < ' ' {
	1726  				return
	1727  			}
	1728  		}
	1729  		size = buf.Len() // n fits
	1730  		p.nodeSizes[n] = size
	1731  	}
	1732  	return
	1733  }
	1734  
	1735  // numLines returns the number of lines spanned by node n in the original source.
	1736  func (p *printer) numLines(n ast.Node) int {
	1737  	if from := n.Pos(); from.IsValid() {
	1738  		if to := n.End(); to.IsValid() {
	1739  			return p.lineFor(to) - p.lineFor(from) + 1
	1740  		}
	1741  	}
	1742  	return infinity
	1743  }
	1744  
	1745  // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's.
	1746  func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int {
	1747  	pos1 := b.Pos()
	1748  	pos2 := b.Rbrace
	1749  	if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) {
	1750  		// opening and closing brace are on different lines - don't make it a one-liner
	1751  		return maxSize + 1
	1752  	}
	1753  	if len(b.List) > 5 {
	1754  		// too many statements - don't make it a one-liner
	1755  		return maxSize + 1
	1756  	}
	1757  	// otherwise, estimate body size
	1758  	bodySize := p.commentSizeBefore(p.posFor(pos2))
	1759  	for i, s := range b.List {
	1760  		if bodySize > maxSize {
	1761  			break // no need to continue
	1762  		}
	1763  		if i > 0 {
	1764  			bodySize += 2 // space for a semicolon and blank
	1765  		}
	1766  		bodySize += p.nodeSize(s, maxSize)
	1767  	}
	1768  	return bodySize
	1769  }
	1770  
	1771  // funcBody prints a function body following a function header of given headerSize.
	1772  // If the header's and block's size are "small enough" and the block is "simple enough",
	1773  // the block is printed on the current line, without line breaks, spaced from the header
	1774  // by sep. Otherwise the block's opening "{" is printed on the current line, followed by
	1775  // lines for the block's statements and its closing "}".
	1776  //
	1777  func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) {
	1778  	if b == nil {
	1779  		return
	1780  	}
	1781  
	1782  	// save/restore composite literal nesting level
	1783  	defer func(level int) {
	1784  		p.level = level
	1785  	}(p.level)
	1786  	p.level = 0
	1787  
	1788  	const maxSize = 100
	1789  	if headerSize+p.bodySize(b, maxSize) <= maxSize {
	1790  		p.print(sep, b.Lbrace, token.LBRACE)
	1791  		if len(b.List) > 0 {
	1792  			p.print(blank)
	1793  			for i, s := range b.List {
	1794  				if i > 0 {
	1795  					p.print(token.SEMICOLON, blank)
	1796  				}
	1797  				p.stmt(s, i == len(b.List)-1)
	1798  			}
	1799  			p.print(blank)
	1800  		}
	1801  		p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak)
	1802  		return
	1803  	}
	1804  
	1805  	if sep != ignore {
	1806  		p.print(blank) // always use blank
	1807  	}
	1808  	p.block(b, 1)
	1809  }
	1810  
	1811  // distanceFrom returns the column difference between p.out (the current output
	1812  // position) and startOutCol. If the start position is on a different line from
	1813  // the current position (or either is unknown), the result is infinity.
	1814  func (p *printer) distanceFrom(startPos token.Pos, startOutCol int) int {
	1815  	if startPos.IsValid() && p.pos.IsValid() && p.posFor(startPos).Line == p.pos.Line {
	1816  		return p.out.Column - startOutCol
	1817  	}
	1818  	return infinity
	1819  }
	1820  
	1821  func (p *printer) funcDecl(d *ast.FuncDecl) {
	1822  	p.setComment(d.Doc)
	1823  	p.print(d.Pos(), token.FUNC, blank)
	1824  	// We have to save startCol only after emitting FUNC; otherwise it can be on a
	1825  	// different line (all whitespace preceding the FUNC is emitted only when the
	1826  	// FUNC is emitted).
	1827  	startCol := p.out.Column - len("func ")
	1828  	if d.Recv != nil {
	1829  		p.parameters(d.Recv, false) // method: print receiver
	1830  		p.print(blank)
	1831  	}
	1832  	p.expr(d.Name)
	1833  	p.signature(d.Type)
	1834  	p.funcBody(p.distanceFrom(d.Pos(), startCol), vtab, d.Body)
	1835  }
	1836  
	1837  func (p *printer) decl(decl ast.Decl) {
	1838  	switch d := decl.(type) {
	1839  	case *ast.BadDecl:
	1840  		p.print(d.Pos(), "BadDecl")
	1841  	case *ast.GenDecl:
	1842  		p.genDecl(d)
	1843  	case *ast.FuncDecl:
	1844  		p.funcDecl(d)
	1845  	default:
	1846  		panic("unreachable")
	1847  	}
	1848  }
	1849  
	1850  // ----------------------------------------------------------------------------
	1851  // Files
	1852  
	1853  func declToken(decl ast.Decl) (tok token.Token) {
	1854  	tok = token.ILLEGAL
	1855  	switch d := decl.(type) {
	1856  	case *ast.GenDecl:
	1857  		tok = d.Tok
	1858  	case *ast.FuncDecl:
	1859  		tok = token.FUNC
	1860  	}
	1861  	return
	1862  }
	1863  
	1864  func (p *printer) declList(list []ast.Decl) {
	1865  	tok := token.ILLEGAL
	1866  	for _, d := range list {
	1867  		prev := tok
	1868  		tok = declToken(d)
	1869  		// If the declaration token changed (e.g., from CONST to TYPE)
	1870  		// or the next declaration has documentation associated with it,
	1871  		// print an empty line between top-level declarations.
	1872  		// (because p.linebreak is called with the position of d, which
	1873  		// is past any documentation, the minimum requirement is satisfied
	1874  		// even w/o the extra getDoc(d) nil-check - leave it in case the
	1875  		// linebreak logic improves - there's already a TODO).
	1876  		if len(p.output) > 0 {
	1877  			// only print line break if we are not at the beginning of the output
	1878  			// (i.e., we are not printing only a partial program)
	1879  			min := 1
	1880  			if prev != tok || getDoc(d) != nil {
	1881  				min = 2
	1882  			}
	1883  			// start a new section if the next declaration is a function
	1884  			// that spans multiple lines (see also issue #19544)
	1885  			p.linebreak(p.lineFor(d.Pos()), min, ignore, tok == token.FUNC && p.numLines(d) > 1)
	1886  		}
	1887  		p.decl(d)
	1888  	}
	1889  }
	1890  
	1891  func (p *printer) file(src *ast.File) {
	1892  	p.setComment(src.Doc)
	1893  	p.print(src.Pos(), token.PACKAGE, blank)
	1894  	p.expr(src.Name)
	1895  	p.declList(src.Decls)
	1896  	p.print(newline)
	1897  }
	1898  

View as plain text