...

Source file src/image/color/ycbcr.go

Documentation: image/color

		 1  // Copyright 2011 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package color
		 6  
		 7  // RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
		 8  func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
		 9  	// The JFIF specification says:
		10  	//	Y' =	0.2990*R + 0.5870*G + 0.1140*B
		11  	//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
		12  	//	Cr =	0.5000*R - 0.4187*G - 0.0813*B + 128
		13  	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
		14  
		15  	r1 := int32(r)
		16  	g1 := int32(g)
		17  	b1 := int32(b)
		18  
		19  	// yy is in range [0,0xff].
		20  	//
		21  	// Note that 19595 + 38470 + 7471 equals 65536.
		22  	yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
		23  
		24  	// The bit twiddling below is equivalent to
		25  	//
		26  	// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
		27  	// if cb < 0 {
		28  	//		 cb = 0
		29  	// } else if cb > 0xff {
		30  	//		 cb = ^int32(0)
		31  	// }
		32  	//
		33  	// but uses fewer branches and is faster.
		34  	// Note that the uint8 type conversion in the return
		35  	// statement will convert ^int32(0) to 0xff.
		36  	// The code below to compute cr uses a similar pattern.
		37  	//
		38  	// Note that -11056 - 21712 + 32768 equals 0.
		39  	cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15
		40  	if uint32(cb)&0xff000000 == 0 {
		41  		cb >>= 16
		42  	} else {
		43  		cb = ^(cb >> 31)
		44  	}
		45  
		46  	// Note that 32768 - 27440 - 5328 equals 0.
		47  	cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15
		48  	if uint32(cr)&0xff000000 == 0 {
		49  		cr >>= 16
		50  	} else {
		51  		cr = ^(cr >> 31)
		52  	}
		53  
		54  	return uint8(yy), uint8(cb), uint8(cr)
		55  }
		56  
		57  // YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
		58  func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
		59  	// The JFIF specification says:
		60  	//	R = Y' + 1.40200*(Cr-128)
		61  	//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
		62  	//	B = Y' + 1.77200*(Cb-128)
		63  	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
		64  	//
		65  	// Those formulae use non-integer multiplication factors. When computing,
		66  	// integer math is generally faster than floating point math. We multiply
		67  	// all of those factors by 1<<16 and round to the nearest integer:
		68  	//	 91881 = roundToNearestInteger(1.40200 * 65536).
		69  	//	 22554 = roundToNearestInteger(0.34414 * 65536).
		70  	//	 46802 = roundToNearestInteger(0.71414 * 65536).
		71  	//	116130 = roundToNearestInteger(1.77200 * 65536).
		72  	//
		73  	// Adding a rounding adjustment in the range [0, 1<<16-1] and then shifting
		74  	// right by 16 gives us an integer math version of the original formulae.
		75  	//	R = (65536*Y' +	91881 *(Cr-128)									+ adjustment) >> 16
		76  	//	G = (65536*Y' -	22554 *(Cb-128) - 46802*(Cr-128) + adjustment) >> 16
		77  	//	B = (65536*Y' + 116130 *(Cb-128)									+ adjustment) >> 16
		78  	// A constant rounding adjustment of 1<<15, one half of 1<<16, would mean
		79  	// round-to-nearest when dividing by 65536 (shifting right by 16).
		80  	// Similarly, a constant rounding adjustment of 0 would mean round-down.
		81  	//
		82  	// Defining YY1 = 65536*Y' + adjustment simplifies the formulae and
		83  	// requires fewer CPU operations:
		84  	//	R = (YY1 +	91881 *(Cr-128)								 ) >> 16
		85  	//	G = (YY1 -	22554 *(Cb-128) - 46802*(Cr-128)) >> 16
		86  	//	B = (YY1 + 116130 *(Cb-128)								 ) >> 16
		87  	//
		88  	// The inputs (y, cb, cr) are 8 bit color, ranging in [0x00, 0xff]. In this
		89  	// function, the output is also 8 bit color, but in the related YCbCr.RGBA
		90  	// method, below, the output is 16 bit color, ranging in [0x0000, 0xffff].
		91  	// Outputting 16 bit color simply requires changing the 16 to 8 in the "R =
		92  	// etc >> 16" equation, and likewise for G and B.
		93  	//
		94  	// As mentioned above, a constant rounding adjustment of 1<<15 is a natural
		95  	// choice, but there is an additional constraint: if c0 := YCbCr{Y: y, Cb:
		96  	// 0x80, Cr: 0x80} and c1 := Gray{Y: y} then c0.RGBA() should equal
		97  	// c1.RGBA(). Specifically, if y == 0 then "R = etc >> 8" should yield
		98  	// 0x0000 and if y == 0xff then "R = etc >> 8" should yield 0xffff. If we
		99  	// used a constant rounding adjustment of 1<<15, then it would yield 0x0080
	 100  	// and 0xff80 respectively.
	 101  	//
	 102  	// Note that when cb == 0x80 and cr == 0x80 then the formulae collapse to:
	 103  	//	R = YY1 >> n
	 104  	//	G = YY1 >> n
	 105  	//	B = YY1 >> n
	 106  	// where n is 16 for this function (8 bit color output) and 8 for the
	 107  	// YCbCr.RGBA method (16 bit color output).
	 108  	//
	 109  	// The solution is to make the rounding adjustment non-constant, and equal
	 110  	// to 257*Y', which ranges over [0, 1<<16-1] as Y' ranges over [0, 255].
	 111  	// YY1 is then defined as:
	 112  	//	YY1 = 65536*Y' + 257*Y'
	 113  	// or equivalently:
	 114  	//	YY1 = Y' * 0x10101
	 115  	yy1 := int32(y) * 0x10101
	 116  	cb1 := int32(cb) - 128
	 117  	cr1 := int32(cr) - 128
	 118  
	 119  	// The bit twiddling below is equivalent to
	 120  	//
	 121  	// r := (yy1 + 91881*cr1) >> 16
	 122  	// if r < 0 {
	 123  	//		 r = 0
	 124  	// } else if r > 0xff {
	 125  	//		 r = ^int32(0)
	 126  	// }
	 127  	//
	 128  	// but uses fewer branches and is faster.
	 129  	// Note that the uint8 type conversion in the return
	 130  	// statement will convert ^int32(0) to 0xff.
	 131  	// The code below to compute g and b uses a similar pattern.
	 132  	r := yy1 + 91881*cr1
	 133  	if uint32(r)&0xff000000 == 0 {
	 134  		r >>= 16
	 135  	} else {
	 136  		r = ^(r >> 31)
	 137  	}
	 138  
	 139  	g := yy1 - 22554*cb1 - 46802*cr1
	 140  	if uint32(g)&0xff000000 == 0 {
	 141  		g >>= 16
	 142  	} else {
	 143  		g = ^(g >> 31)
	 144  	}
	 145  
	 146  	b := yy1 + 116130*cb1
	 147  	if uint32(b)&0xff000000 == 0 {
	 148  		b >>= 16
	 149  	} else {
	 150  		b = ^(b >> 31)
	 151  	}
	 152  
	 153  	return uint8(r), uint8(g), uint8(b)
	 154  }
	 155  
	 156  // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
	 157  // one luma and two chroma components.
	 158  //
	 159  // JPEG, VP8, the MPEG family and other codecs use this color model. Such
	 160  // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
	 161  // speaking, the term YUV applies only to analog video signals, and Y' (luma)
	 162  // is Y (luminance) after applying gamma correction.
	 163  //
	 164  // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
	 165  // different formulae for converting between the two. This package follows
	 166  // the JFIF specification at https://www.w3.org/Graphics/JPEG/jfif3.pdf.
	 167  type YCbCr struct {
	 168  	Y, Cb, Cr uint8
	 169  }
	 170  
	 171  func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
	 172  	// This code is a copy of the YCbCrToRGB function above, except that it
	 173  	// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a
	 174  	// subtle difference between doing this and having YCbCr satisfy the Color
	 175  	// interface by first converting to an RGBA. The latter loses some
	 176  	// information by going to and from 8 bits per channel.
	 177  	//
	 178  	// For example, this code:
	 179  	//	const y, cb, cr = 0x7f, 0x7f, 0x7f
	 180  	//	r, g, b := color.YCbCrToRGB(y, cb, cr)
	 181  	//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA()
	 182  	//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA()
	 183  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0)
	 184  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1)
	 185  	// prints:
	 186  	//	0x7e18 0x808d 0x7db9
	 187  	//	0x7e7e 0x8080 0x7d7d
	 188  
	 189  	yy1 := int32(c.Y) * 0x10101
	 190  	cb1 := int32(c.Cb) - 128
	 191  	cr1 := int32(c.Cr) - 128
	 192  
	 193  	// The bit twiddling below is equivalent to
	 194  	//
	 195  	// r := (yy1 + 91881*cr1) >> 8
	 196  	// if r < 0 {
	 197  	//		 r = 0
	 198  	// } else if r > 0xff {
	 199  	//		 r = 0xffff
	 200  	// }
	 201  	//
	 202  	// but uses fewer branches and is faster.
	 203  	// The code below to compute g and b uses a similar pattern.
	 204  	r := yy1 + 91881*cr1
	 205  	if uint32(r)&0xff000000 == 0 {
	 206  		r >>= 8
	 207  	} else {
	 208  		r = ^(r >> 31) & 0xffff
	 209  	}
	 210  
	 211  	g := yy1 - 22554*cb1 - 46802*cr1
	 212  	if uint32(g)&0xff000000 == 0 {
	 213  		g >>= 8
	 214  	} else {
	 215  		g = ^(g >> 31) & 0xffff
	 216  	}
	 217  
	 218  	b := yy1 + 116130*cb1
	 219  	if uint32(b)&0xff000000 == 0 {
	 220  		b >>= 8
	 221  	} else {
	 222  		b = ^(b >> 31) & 0xffff
	 223  	}
	 224  
	 225  	return uint32(r), uint32(g), uint32(b), 0xffff
	 226  }
	 227  
	 228  // YCbCrModel is the Model for Y'CbCr colors.
	 229  var YCbCrModel Model = ModelFunc(yCbCrModel)
	 230  
	 231  func yCbCrModel(c Color) Color {
	 232  	if _, ok := c.(YCbCr); ok {
	 233  		return c
	 234  	}
	 235  	r, g, b, _ := c.RGBA()
	 236  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
	 237  	return YCbCr{y, u, v}
	 238  }
	 239  
	 240  // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having
	 241  // 8 bits each for one luma, two chroma and one alpha component.
	 242  type NYCbCrA struct {
	 243  	YCbCr
	 244  	A uint8
	 245  }
	 246  
	 247  func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) {
	 248  	// The first part of this method is the same as YCbCr.RGBA.
	 249  	yy1 := int32(c.Y) * 0x10101
	 250  	cb1 := int32(c.Cb) - 128
	 251  	cr1 := int32(c.Cr) - 128
	 252  
	 253  	// The bit twiddling below is equivalent to
	 254  	//
	 255  	// r := (yy1 + 91881*cr1) >> 8
	 256  	// if r < 0 {
	 257  	//		 r = 0
	 258  	// } else if r > 0xff {
	 259  	//		 r = 0xffff
	 260  	// }
	 261  	//
	 262  	// but uses fewer branches and is faster.
	 263  	// The code below to compute g and b uses a similar pattern.
	 264  	r := yy1 + 91881*cr1
	 265  	if uint32(r)&0xff000000 == 0 {
	 266  		r >>= 8
	 267  	} else {
	 268  		r = ^(r >> 31) & 0xffff
	 269  	}
	 270  
	 271  	g := yy1 - 22554*cb1 - 46802*cr1
	 272  	if uint32(g)&0xff000000 == 0 {
	 273  		g >>= 8
	 274  	} else {
	 275  		g = ^(g >> 31) & 0xffff
	 276  	}
	 277  
	 278  	b := yy1 + 116130*cb1
	 279  	if uint32(b)&0xff000000 == 0 {
	 280  		b >>= 8
	 281  	} else {
	 282  		b = ^(b >> 31) & 0xffff
	 283  	}
	 284  
	 285  	// The second part of this method applies the alpha.
	 286  	a := uint32(c.A) * 0x101
	 287  	return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a
	 288  }
	 289  
	 290  // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha
	 291  // colors.
	 292  var NYCbCrAModel Model = ModelFunc(nYCbCrAModel)
	 293  
	 294  func nYCbCrAModel(c Color) Color {
	 295  	switch c := c.(type) {
	 296  	case NYCbCrA:
	 297  		return c
	 298  	case YCbCr:
	 299  		return NYCbCrA{c, 0xff}
	 300  	}
	 301  	r, g, b, a := c.RGBA()
	 302  
	 303  	// Convert from alpha-premultiplied to non-alpha-premultiplied.
	 304  	if a != 0 {
	 305  		r = (r * 0xffff) / a
	 306  		g = (g * 0xffff) / a
	 307  		b = (b * 0xffff) / a
	 308  	}
	 309  
	 310  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
	 311  	return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)}
	 312  }
	 313  
	 314  // RGBToCMYK converts an RGB triple to a CMYK quadruple.
	 315  func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
	 316  	rr := uint32(r)
	 317  	gg := uint32(g)
	 318  	bb := uint32(b)
	 319  	w := rr
	 320  	if w < gg {
	 321  		w = gg
	 322  	}
	 323  	if w < bb {
	 324  		w = bb
	 325  	}
	 326  	if w == 0 {
	 327  		return 0, 0, 0, 0xff
	 328  	}
	 329  	c := (w - rr) * 0xff / w
	 330  	m := (w - gg) * 0xff / w
	 331  	y := (w - bb) * 0xff / w
	 332  	return uint8(c), uint8(m), uint8(y), uint8(0xff - w)
	 333  }
	 334  
	 335  // CMYKToRGB converts a CMYK quadruple to an RGB triple.
	 336  func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
	 337  	w := 0xffff - uint32(k)*0x101
	 338  	r := (0xffff - uint32(c)*0x101) * w / 0xffff
	 339  	g := (0xffff - uint32(m)*0x101) * w / 0xffff
	 340  	b := (0xffff - uint32(y)*0x101) * w / 0xffff
	 341  	return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)
	 342  }
	 343  
	 344  // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
	 345  // magenta, yellow and black.
	 346  //
	 347  // It is not associated with any particular color profile.
	 348  type CMYK struct {
	 349  	C, M, Y, K uint8
	 350  }
	 351  
	 352  func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
	 353  	// This code is a copy of the CMYKToRGB function above, except that it
	 354  	// returns values in the range [0, 0xffff] instead of [0, 0xff].
	 355  
	 356  	w := 0xffff - uint32(c.K)*0x101
	 357  	r := (0xffff - uint32(c.C)*0x101) * w / 0xffff
	 358  	g := (0xffff - uint32(c.M)*0x101) * w / 0xffff
	 359  	b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff
	 360  	return r, g, b, 0xffff
	 361  }
	 362  
	 363  // CMYKModel is the Model for CMYK colors.
	 364  var CMYKModel Model = ModelFunc(cmykModel)
	 365  
	 366  func cmykModel(c Color) Color {
	 367  	if _, ok := c.(CMYK); ok {
	 368  		return c
	 369  	}
	 370  	r, g, b, _ := c.RGBA()
	 371  	cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
	 372  	return CMYK{cc, mm, yy, kk}
	 373  }
	 374  

View as plain text