...

Source file src/image/jpeg/writer_test.go

Documentation: image/jpeg

		 1  // Copyright 2011 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package jpeg
		 6  
		 7  import (
		 8  	"bytes"
		 9  	"fmt"
		10  	"image"
		11  	"image/color"
		12  	"image/png"
		13  	"io"
		14  	"math/rand"
		15  	"os"
		16  	"testing"
		17  )
		18  
		19  // zigzag maps from the natural ordering to the zig-zag ordering. For example,
		20  // zigzag[0*8 + 3] is the zig-zag sequence number of the element in the fourth
		21  // column and first row.
		22  var zigzag = [blockSize]int{
		23  	0, 1, 5, 6, 14, 15, 27, 28,
		24  	2, 4, 7, 13, 16, 26, 29, 42,
		25  	3, 8, 12, 17, 25, 30, 41, 43,
		26  	9, 11, 18, 24, 31, 40, 44, 53,
		27  	10, 19, 23, 32, 39, 45, 52, 54,
		28  	20, 22, 33, 38, 46, 51, 55, 60,
		29  	21, 34, 37, 47, 50, 56, 59, 61,
		30  	35, 36, 48, 49, 57, 58, 62, 63,
		31  }
		32  
		33  func TestZigUnzig(t *testing.T) {
		34  	for i := 0; i < blockSize; i++ {
		35  		if unzig[zigzag[i]] != i {
		36  			t.Errorf("unzig[zigzag[%d]] == %d", i, unzig[zigzag[i]])
		37  		}
		38  		if zigzag[unzig[i]] != i {
		39  			t.Errorf("zigzag[unzig[%d]] == %d", i, zigzag[unzig[i]])
		40  		}
		41  	}
		42  }
		43  
		44  // unscaledQuantInNaturalOrder are the unscaled quantization tables in
		45  // natural (not zig-zag) order, as specified in section K.1.
		46  var unscaledQuantInNaturalOrder = [nQuantIndex][blockSize]byte{
		47  	// Luminance.
		48  	{
		49  		16, 11, 10, 16, 24, 40, 51, 61,
		50  		12, 12, 14, 19, 26, 58, 60, 55,
		51  		14, 13, 16, 24, 40, 57, 69, 56,
		52  		14, 17, 22, 29, 51, 87, 80, 62,
		53  		18, 22, 37, 56, 68, 109, 103, 77,
		54  		24, 35, 55, 64, 81, 104, 113, 92,
		55  		49, 64, 78, 87, 103, 121, 120, 101,
		56  		72, 92, 95, 98, 112, 100, 103, 99,
		57  	},
		58  	// Chrominance.
		59  	{
		60  		17, 18, 24, 47, 99, 99, 99, 99,
		61  		18, 21, 26, 66, 99, 99, 99, 99,
		62  		24, 26, 56, 99, 99, 99, 99, 99,
		63  		47, 66, 99, 99, 99, 99, 99, 99,
		64  		99, 99, 99, 99, 99, 99, 99, 99,
		65  		99, 99, 99, 99, 99, 99, 99, 99,
		66  		99, 99, 99, 99, 99, 99, 99, 99,
		67  		99, 99, 99, 99, 99, 99, 99, 99,
		68  	},
		69  }
		70  
		71  func TestUnscaledQuant(t *testing.T) {
		72  	bad := false
		73  	for i := quantIndex(0); i < nQuantIndex; i++ {
		74  		for zig := 0; zig < blockSize; zig++ {
		75  			got := unscaledQuant[i][zig]
		76  			want := unscaledQuantInNaturalOrder[i][unzig[zig]]
		77  			if got != want {
		78  				t.Errorf("i=%d, zig=%d: got %d, want %d", i, zig, got, want)
		79  				bad = true
		80  			}
		81  		}
		82  	}
		83  	if bad {
		84  		names := [nQuantIndex]string{"Luminance", "Chrominance"}
		85  		buf := &bytes.Buffer{}
		86  		for i, name := range names {
		87  			fmt.Fprintf(buf, "// %s.\n{\n", name)
		88  			for zig := 0; zig < blockSize; zig++ {
		89  				fmt.Fprintf(buf, "%d, ", unscaledQuantInNaturalOrder[i][unzig[zig]])
		90  				if zig%8 == 7 {
		91  					buf.WriteString("\n")
		92  				}
		93  			}
		94  			buf.WriteString("},\n")
		95  		}
		96  		t.Logf("expected unscaledQuant values:\n%s", buf.String())
		97  	}
		98  }
		99  
	 100  var testCase = []struct {
	 101  	filename	string
	 102  	quality	 int
	 103  	tolerance int64
	 104  }{
	 105  	{"../testdata/video-001.png", 1, 24 << 8},
	 106  	{"../testdata/video-001.png", 20, 12 << 8},
	 107  	{"../testdata/video-001.png", 60, 8 << 8},
	 108  	{"../testdata/video-001.png", 80, 6 << 8},
	 109  	{"../testdata/video-001.png", 90, 4 << 8},
	 110  	{"../testdata/video-001.png", 100, 2 << 8},
	 111  }
	 112  
	 113  func delta(u0, u1 uint32) int64 {
	 114  	d := int64(u0) - int64(u1)
	 115  	if d < 0 {
	 116  		return -d
	 117  	}
	 118  	return d
	 119  }
	 120  
	 121  func readPng(filename string) (image.Image, error) {
	 122  	f, err := os.Open(filename)
	 123  	if err != nil {
	 124  		return nil, err
	 125  	}
	 126  	defer f.Close()
	 127  	return png.Decode(f)
	 128  }
	 129  
	 130  func TestWriter(t *testing.T) {
	 131  	for _, tc := range testCase {
	 132  		// Read the image.
	 133  		m0, err := readPng(tc.filename)
	 134  		if err != nil {
	 135  			t.Error(tc.filename, err)
	 136  			continue
	 137  		}
	 138  		// Encode that image as JPEG.
	 139  		var buf bytes.Buffer
	 140  		err = Encode(&buf, m0, &Options{Quality: tc.quality})
	 141  		if err != nil {
	 142  			t.Error(tc.filename, err)
	 143  			continue
	 144  		}
	 145  		// Decode that JPEG.
	 146  		m1, err := Decode(&buf)
	 147  		if err != nil {
	 148  			t.Error(tc.filename, err)
	 149  			continue
	 150  		}
	 151  		if m0.Bounds() != m1.Bounds() {
	 152  			t.Errorf("%s, bounds differ: %v and %v", tc.filename, m0.Bounds(), m1.Bounds())
	 153  			continue
	 154  		}
	 155  		// Compare the average delta to the tolerance level.
	 156  		if averageDelta(m0, m1) > tc.tolerance {
	 157  			t.Errorf("%s, quality=%d: average delta is too high", tc.filename, tc.quality)
	 158  			continue
	 159  		}
	 160  	}
	 161  }
	 162  
	 163  // TestWriteGrayscale tests that a grayscale images survives a round-trip
	 164  // through encode/decode cycle.
	 165  func TestWriteGrayscale(t *testing.T) {
	 166  	m0 := image.NewGray(image.Rect(0, 0, 32, 32))
	 167  	for i := range m0.Pix {
	 168  		m0.Pix[i] = uint8(i)
	 169  	}
	 170  	var buf bytes.Buffer
	 171  	if err := Encode(&buf, m0, nil); err != nil {
	 172  		t.Fatal(err)
	 173  	}
	 174  	m1, err := Decode(&buf)
	 175  	if err != nil {
	 176  		t.Fatal(err)
	 177  	}
	 178  	if m0.Bounds() != m1.Bounds() {
	 179  		t.Fatalf("bounds differ: %v and %v", m0.Bounds(), m1.Bounds())
	 180  	}
	 181  	if _, ok := m1.(*image.Gray); !ok {
	 182  		t.Errorf("got %T, want *image.Gray", m1)
	 183  	}
	 184  	// Compare the average delta to the tolerance level.
	 185  	want := int64(2 << 8)
	 186  	if got := averageDelta(m0, m1); got > want {
	 187  		t.Errorf("average delta too high; got %d, want <= %d", got, want)
	 188  	}
	 189  }
	 190  
	 191  // averageDelta returns the average delta in RGB space. The two images must
	 192  // have the same bounds.
	 193  func averageDelta(m0, m1 image.Image) int64 {
	 194  	b := m0.Bounds()
	 195  	var sum, n int64
	 196  	for y := b.Min.Y; y < b.Max.Y; y++ {
	 197  		for x := b.Min.X; x < b.Max.X; x++ {
	 198  			c0 := m0.At(x, y)
	 199  			c1 := m1.At(x, y)
	 200  			r0, g0, b0, _ := c0.RGBA()
	 201  			r1, g1, b1, _ := c1.RGBA()
	 202  			sum += delta(r0, r1)
	 203  			sum += delta(g0, g1)
	 204  			sum += delta(b0, b1)
	 205  			n += 3
	 206  		}
	 207  	}
	 208  	return sum / n
	 209  }
	 210  
	 211  func TestEncodeYCbCr(t *testing.T) {
	 212  	bo := image.Rect(0, 0, 640, 480)
	 213  	imgRGBA := image.NewRGBA(bo)
	 214  	// Must use 444 subsampling to avoid lossy RGBA to YCbCr conversion.
	 215  	imgYCbCr := image.NewYCbCr(bo, image.YCbCrSubsampleRatio444)
	 216  	rnd := rand.New(rand.NewSource(123))
	 217  	// Create identical rgba and ycbcr images.
	 218  	for y := bo.Min.Y; y < bo.Max.Y; y++ {
	 219  		for x := bo.Min.X; x < bo.Max.X; x++ {
	 220  			col := color.RGBA{
	 221  				uint8(rnd.Intn(256)),
	 222  				uint8(rnd.Intn(256)),
	 223  				uint8(rnd.Intn(256)),
	 224  				255,
	 225  			}
	 226  			imgRGBA.SetRGBA(x, y, col)
	 227  			yo := imgYCbCr.YOffset(x, y)
	 228  			co := imgYCbCr.COffset(x, y)
	 229  			cy, ccr, ccb := color.RGBToYCbCr(col.R, col.G, col.B)
	 230  			imgYCbCr.Y[yo] = cy
	 231  			imgYCbCr.Cb[co] = ccr
	 232  			imgYCbCr.Cr[co] = ccb
	 233  		}
	 234  	}
	 235  
	 236  	// Now check that both images are identical after an encode.
	 237  	var bufRGBA, bufYCbCr bytes.Buffer
	 238  	Encode(&bufRGBA, imgRGBA, nil)
	 239  	Encode(&bufYCbCr, imgYCbCr, nil)
	 240  	if !bytes.Equal(bufRGBA.Bytes(), bufYCbCr.Bytes()) {
	 241  		t.Errorf("RGBA and YCbCr encoded bytes differ")
	 242  	}
	 243  }
	 244  
	 245  func BenchmarkEncodeRGBA(b *testing.B) {
	 246  	img := image.NewRGBA(image.Rect(0, 0, 640, 480))
	 247  	bo := img.Bounds()
	 248  	rnd := rand.New(rand.NewSource(123))
	 249  	for y := bo.Min.Y; y < bo.Max.Y; y++ {
	 250  		for x := bo.Min.X; x < bo.Max.X; x++ {
	 251  			img.SetRGBA(x, y, color.RGBA{
	 252  				uint8(rnd.Intn(256)),
	 253  				uint8(rnd.Intn(256)),
	 254  				uint8(rnd.Intn(256)),
	 255  				255,
	 256  			})
	 257  		}
	 258  	}
	 259  	b.SetBytes(640 * 480 * 4)
	 260  	b.ReportAllocs()
	 261  	b.ResetTimer()
	 262  	options := &Options{Quality: 90}
	 263  	for i := 0; i < b.N; i++ {
	 264  		Encode(io.Discard, img, options)
	 265  	}
	 266  }
	 267  
	 268  func BenchmarkEncodeYCbCr(b *testing.B) {
	 269  	img := image.NewYCbCr(image.Rect(0, 0, 640, 480), image.YCbCrSubsampleRatio420)
	 270  	bo := img.Bounds()
	 271  	rnd := rand.New(rand.NewSource(123))
	 272  	for y := bo.Min.Y; y < bo.Max.Y; y++ {
	 273  		for x := bo.Min.X; x < bo.Max.X; x++ {
	 274  			cy := img.YOffset(x, y)
	 275  			ci := img.COffset(x, y)
	 276  			img.Y[cy] = uint8(rnd.Intn(256))
	 277  			img.Cb[ci] = uint8(rnd.Intn(256))
	 278  			img.Cr[ci] = uint8(rnd.Intn(256))
	 279  		}
	 280  	}
	 281  	b.SetBytes(640 * 480 * 3)
	 282  	b.ReportAllocs()
	 283  	b.ResetTimer()
	 284  	options := &Options{Quality: 90}
	 285  	for i := 0; i < b.N; i++ {
	 286  		Encode(io.Discard, img, options)
	 287  	}
	 288  }
	 289  

View as plain text