...

Source file src/math/acosh.go

Documentation: math

		 1  // Copyright 2010 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package math
		 6  
		 7  // The original C code, the long comment, and the constants
		 8  // below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
		 9  // and came with this notice. The go code is a simplified
		10  // version of the original C.
		11  //
		12  // ====================================================
		13  // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
		14  //
		15  // Developed at SunPro, a Sun Microsystems, Inc. business.
		16  // Permission to use, copy, modify, and distribute this
		17  // software is freely granted, provided that this notice
		18  // is preserved.
		19  // ====================================================
		20  //
		21  //
		22  // __ieee754_acosh(x)
		23  // Method :
		24  //	Based on
		25  //					acosh(x) = log [ x + sqrt(x*x-1) ]
		26  //	we have
		27  //					acosh(x) := log(x)+ln2,	if x is large; else
		28  //					acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
		29  //					acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
		30  //
		31  // Special cases:
		32  //	acosh(x) is NaN with signal if x<1.
		33  //	acosh(NaN) is NaN without signal.
		34  //
		35  
		36  // Acosh returns the inverse hyperbolic cosine of x.
		37  //
		38  // Special cases are:
		39  //	Acosh(+Inf) = +Inf
		40  //	Acosh(x) = NaN if x < 1
		41  //	Acosh(NaN) = NaN
		42  func Acosh(x float64) float64 {
		43  	if haveArchAcosh {
		44  		return archAcosh(x)
		45  	}
		46  	return acosh(x)
		47  }
		48  
		49  func acosh(x float64) float64 {
		50  	const Large = 1 << 28 // 2**28
		51  	// first case is special case
		52  	switch {
		53  	case x < 1 || IsNaN(x):
		54  		return NaN()
		55  	case x == 1:
		56  		return 0
		57  	case x >= Large:
		58  		return Log(x) + Ln2 // x > 2**28
		59  	case x > 2:
		60  		return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
		61  	}
		62  	t := x - 1
		63  	return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
		64  }
		65  

View as plain text