...

Source file src/math/big/floatconv.go

Documentation: math/big

		 1  // Copyright 2015 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // This file implements string-to-Float conversion functions.
		 6  
		 7  package big
		 8  
		 9  import (
		10  	"fmt"
		11  	"io"
		12  	"strings"
		13  )
		14  
		15  var floatZero Float
		16  
		17  // SetString sets z to the value of s and returns z and a boolean indicating
		18  // success. s must be a floating-point number of the same format as accepted
		19  // by Parse, with base argument 0. The entire string (not just a prefix) must
		20  // be valid for success. If the operation failed, the value of z is undefined
		21  // but the returned value is nil.
		22  func (z *Float) SetString(s string) (*Float, bool) {
		23  	if f, _, err := z.Parse(s, 0); err == nil {
		24  		return f, true
		25  	}
		26  	return nil, false
		27  }
		28  
		29  // scan is like Parse but reads the longest possible prefix representing a valid
		30  // floating point number from an io.ByteScanner rather than a string. It serves
		31  // as the implementation of Parse. It does not recognize ±Inf and does not expect
		32  // EOF at the end.
		33  func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
		34  	prec := z.prec
		35  	if prec == 0 {
		36  		prec = 64
		37  	}
		38  
		39  	// A reasonable value in case of an error.
		40  	z.form = zero
		41  
		42  	// sign
		43  	z.neg, err = scanSign(r)
		44  	if err != nil {
		45  		return
		46  	}
		47  
		48  	// mantissa
		49  	var fcount int // fractional digit count; valid if <= 0
		50  	z.mant, b, fcount, err = z.mant.scan(r, base, true)
		51  	if err != nil {
		52  		return
		53  	}
		54  
		55  	// exponent
		56  	var exp int64
		57  	var ebase int
		58  	exp, ebase, err = scanExponent(r, true, base == 0)
		59  	if err != nil {
		60  		return
		61  	}
		62  
		63  	// special-case 0
		64  	if len(z.mant) == 0 {
		65  		z.prec = prec
		66  		z.acc = Exact
		67  		z.form = zero
		68  		f = z
		69  		return
		70  	}
		71  	// len(z.mant) > 0
		72  
		73  	// The mantissa may have a radix point (fcount <= 0) and there
		74  	// may be a nonzero exponent exp. The radix point amounts to a
		75  	// division by b**(-fcount). An exponent means multiplication by
		76  	// ebase**exp. Finally, mantissa normalization (shift left) requires
		77  	// a correcting multiplication by 2**(-shiftcount). Multiplications
		78  	// are commutative, so we can apply them in any order as long as there
		79  	// is no loss of precision. We only have powers of 2 and 10, and
		80  	// we split powers of 10 into the product of the same powers of
		81  	// 2 and 5. This reduces the size of the multiplication factor
		82  	// needed for base-10 exponents.
		83  
		84  	// normalize mantissa and determine initial exponent contributions
		85  	exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
		86  	exp5 := int64(0)
		87  
		88  	// determine binary or decimal exponent contribution of radix point
		89  	if fcount < 0 {
		90  		// The mantissa has a radix point ddd.dddd; and
		91  		// -fcount is the number of digits to the right
		92  		// of '.'. Adjust relevant exponent accordingly.
		93  		d := int64(fcount)
		94  		switch b {
		95  		case 10:
		96  			exp5 = d
		97  			fallthrough // 10**e == 5**e * 2**e
		98  		case 2:
		99  			exp2 += d
	 100  		case 8:
	 101  			exp2 += d * 3 // octal digits are 3 bits each
	 102  		case 16:
	 103  			exp2 += d * 4 // hexadecimal digits are 4 bits each
	 104  		default:
	 105  			panic("unexpected mantissa base")
	 106  		}
	 107  		// fcount consumed - not needed anymore
	 108  	}
	 109  
	 110  	// take actual exponent into account
	 111  	switch ebase {
	 112  	case 10:
	 113  		exp5 += exp
	 114  		fallthrough // see fallthrough above
	 115  	case 2:
	 116  		exp2 += exp
	 117  	default:
	 118  		panic("unexpected exponent base")
	 119  	}
	 120  	// exp consumed - not needed anymore
	 121  
	 122  	// apply 2**exp2
	 123  	if MinExp <= exp2 && exp2 <= MaxExp {
	 124  		z.prec = prec
	 125  		z.form = finite
	 126  		z.exp = int32(exp2)
	 127  		f = z
	 128  	} else {
	 129  		err = fmt.Errorf("exponent overflow")
	 130  		return
	 131  	}
	 132  
	 133  	if exp5 == 0 {
	 134  		// no decimal exponent contribution
	 135  		z.round(0)
	 136  		return
	 137  	}
	 138  	// exp5 != 0
	 139  
	 140  	// apply 5**exp5
	 141  	p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
	 142  	if exp5 < 0 {
	 143  		z.Quo(z, p.pow5(uint64(-exp5)))
	 144  	} else {
	 145  		z.Mul(z, p.pow5(uint64(exp5)))
	 146  	}
	 147  
	 148  	return
	 149  }
	 150  
	 151  // These powers of 5 fit into a uint64.
	 152  //
	 153  //	for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
	 154  //		fmt.Println(q)
	 155  //	}
	 156  //
	 157  var pow5tab = [...]uint64{
	 158  	1,
	 159  	5,
	 160  	25,
	 161  	125,
	 162  	625,
	 163  	3125,
	 164  	15625,
	 165  	78125,
	 166  	390625,
	 167  	1953125,
	 168  	9765625,
	 169  	48828125,
	 170  	244140625,
	 171  	1220703125,
	 172  	6103515625,
	 173  	30517578125,
	 174  	152587890625,
	 175  	762939453125,
	 176  	3814697265625,
	 177  	19073486328125,
	 178  	95367431640625,
	 179  	476837158203125,
	 180  	2384185791015625,
	 181  	11920928955078125,
	 182  	59604644775390625,
	 183  	298023223876953125,
	 184  	1490116119384765625,
	 185  	7450580596923828125,
	 186  }
	 187  
	 188  // pow5 sets z to 5**n and returns z.
	 189  // n must not be negative.
	 190  func (z *Float) pow5(n uint64) *Float {
	 191  	const m = uint64(len(pow5tab) - 1)
	 192  	if n <= m {
	 193  		return z.SetUint64(pow5tab[n])
	 194  	}
	 195  	// n > m
	 196  
	 197  	z.SetUint64(pow5tab[m])
	 198  	n -= m
	 199  
	 200  	// use more bits for f than for z
	 201  	// TODO(gri) what is the right number?
	 202  	f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)
	 203  
	 204  	for n > 0 {
	 205  		if n&1 != 0 {
	 206  			z.Mul(z, f)
	 207  		}
	 208  		f.Mul(f, f)
	 209  		n >>= 1
	 210  	}
	 211  
	 212  	return z
	 213  }
	 214  
	 215  // Parse parses s which must contain a text representation of a floating-
	 216  // point number with a mantissa in the given conversion base (the exponent
	 217  // is always a decimal number), or a string representing an infinite value.
	 218  //
	 219  // For base 0, an underscore character ``_'' may appear between a base
	 220  // prefix and an adjacent digit, and between successive digits; such
	 221  // underscores do not change the value of the number, or the returned
	 222  // digit count. Incorrect placement of underscores is reported as an
	 223  // error if there are no other errors. If base != 0, underscores are
	 224  // not recognized and thus terminate scanning like any other character
	 225  // that is not a valid radix point or digit.
	 226  //
	 227  // It sets z to the (possibly rounded) value of the corresponding floating-
	 228  // point value, and returns z, the actual base b, and an error err, if any.
	 229  // The entire string (not just a prefix) must be consumed for success.
	 230  // If z's precision is 0, it is changed to 64 before rounding takes effect.
	 231  // The number must be of the form:
	 232  //
	 233  //		 number		= [ sign ] ( float | "inf" | "Inf" ) .
	 234  //		 sign			= "+" | "-" .
	 235  //		 float		 = ( mantissa | prefix pmantissa ) [ exponent ] .
	 236  //		 prefix		= "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
	 237  //		 mantissa	= digits "." [ digits ] | digits | "." digits .
	 238  //		 pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
	 239  //		 exponent	= ( "e" | "E" | "p" | "P" ) [ sign ] digits .
	 240  //		 digits		= digit { [ "_" ] digit } .
	 241  //		 digit		 = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
	 242  //
	 243  // The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base
	 244  // argument will lead to a run-time panic.
	 245  //
	 246  // For base 0, the number prefix determines the actual base: A prefix of
	 247  // ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and
	 248  // ``0x'' or ``0X'' selects base 16. Otherwise, the actual base is 10 and
	 249  // no prefix is accepted. The octal prefix "0" is not supported (a leading
	 250  // "0" is simply considered a "0").
	 251  //
	 252  // A "p" or "P" exponent indicates a base 2 (rather then base 10) exponent;
	 253  // for instance, "0x1.fffffffffffffp1023" (using base 0) represents the
	 254  // maximum float64 value. For hexadecimal mantissae, the exponent character
	 255  // must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator
	 256  // cannot be distinguished from a mantissa digit).
	 257  //
	 258  // The returned *Float f is nil and the value of z is valid but not
	 259  // defined if an error is reported.
	 260  //
	 261  func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
	 262  	// scan doesn't handle ±Inf
	 263  	if len(s) == 3 && (s == "Inf" || s == "inf") {
	 264  		f = z.SetInf(false)
	 265  		return
	 266  	}
	 267  	if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
	 268  		f = z.SetInf(s[0] == '-')
	 269  		return
	 270  	}
	 271  
	 272  	r := strings.NewReader(s)
	 273  	if f, b, err = z.scan(r, base); err != nil {
	 274  		return
	 275  	}
	 276  
	 277  	// entire string must have been consumed
	 278  	if ch, err2 := r.ReadByte(); err2 == nil {
	 279  		err = fmt.Errorf("expected end of string, found %q", ch)
	 280  	} else if err2 != io.EOF {
	 281  		err = err2
	 282  	}
	 283  
	 284  	return
	 285  }
	 286  
	 287  // ParseFloat is like f.Parse(s, base) with f set to the given precision
	 288  // and rounding mode.
	 289  func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
	 290  	return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
	 291  }
	 292  
	 293  var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner
	 294  
	 295  // Scan is a support routine for fmt.Scanner; it sets z to the value of
	 296  // the scanned number. It accepts formats whose verbs are supported by
	 297  // fmt.Scan for floating point values, which are:
	 298  // 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
	 299  // Scan doesn't handle ±Inf.
	 300  func (z *Float) Scan(s fmt.ScanState, ch rune) error {
	 301  	s.SkipSpace()
	 302  	_, _, err := z.scan(byteReader{s}, 0)
	 303  	return err
	 304  }
	 305  

View as plain text