...

Source file src/math/bits/bits.go

Documentation: math/bits

		 1  // Copyright 2017 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  //go:generate go run make_tables.go
		 6  
		 7  // Package bits implements bit counting and manipulation
		 8  // functions for the predeclared unsigned integer types.
		 9  package bits
		10  
		11  const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
		12  
		13  // UintSize is the size of a uint in bits.
		14  const UintSize = uintSize
		15  
		16  // --- LeadingZeros ---
		17  
		18  // LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
		19  func LeadingZeros(x uint) int { return UintSize - Len(x) }
		20  
		21  // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
		22  func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
		23  
		24  // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
		25  func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
		26  
		27  // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
		28  func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
		29  
		30  // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
		31  func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
		32  
		33  // --- TrailingZeros ---
		34  
		35  // See http://supertech.csail.mit.edu/papers/debruijn.pdf
		36  const deBruijn32 = 0x077CB531
		37  
		38  var deBruijn32tab = [32]byte{
		39  	0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
		40  	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
		41  }
		42  
		43  const deBruijn64 = 0x03f79d71b4ca8b09
		44  
		45  var deBruijn64tab = [64]byte{
		46  	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
		47  	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
		48  	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
		49  	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
		50  }
		51  
		52  // TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
		53  func TrailingZeros(x uint) int {
		54  	if UintSize == 32 {
		55  		return TrailingZeros32(uint32(x))
		56  	}
		57  	return TrailingZeros64(uint64(x))
		58  }
		59  
		60  // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
		61  func TrailingZeros8(x uint8) int {
		62  	return int(ntz8tab[x])
		63  }
		64  
		65  // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
		66  func TrailingZeros16(x uint16) int {
		67  	if x == 0 {
		68  		return 16
		69  	}
		70  	// see comment in TrailingZeros64
		71  	return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
		72  }
		73  
		74  // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
		75  func TrailingZeros32(x uint32) int {
		76  	if x == 0 {
		77  		return 32
		78  	}
		79  	// see comment in TrailingZeros64
		80  	return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
		81  }
		82  
		83  // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
		84  func TrailingZeros64(x uint64) int {
		85  	if x == 0 {
		86  		return 64
		87  	}
		88  	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
		89  	//
		90  	// x & -x leaves only the right-most bit set in the word. Let k be the
		91  	// index of that bit. Since only a single bit is set, the value is two
		92  	// to the power of k. Multiplying by a power of two is equivalent to
		93  	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
		94  	// is such that all six bit, consecutive substrings are distinct.
		95  	// Therefore, if we have a left shifted version of this constant we can
		96  	// find by how many bits it was shifted by looking at which six bit
		97  	// substring ended up at the top of the word.
		98  	// (Knuth, volume 4, section 7.3.1)
		99  	return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
	 100  }
	 101  
	 102  // --- OnesCount ---
	 103  
	 104  const m0 = 0x5555555555555555 // 01010101 ...
	 105  const m1 = 0x3333333333333333 // 00110011 ...
	 106  const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
	 107  const m3 = 0x00ff00ff00ff00ff // etc.
	 108  const m4 = 0x0000ffff0000ffff
	 109  
	 110  // OnesCount returns the number of one bits ("population count") in x.
	 111  func OnesCount(x uint) int {
	 112  	if UintSize == 32 {
	 113  		return OnesCount32(uint32(x))
	 114  	}
	 115  	return OnesCount64(uint64(x))
	 116  }
	 117  
	 118  // OnesCount8 returns the number of one bits ("population count") in x.
	 119  func OnesCount8(x uint8) int {
	 120  	return int(pop8tab[x])
	 121  }
	 122  
	 123  // OnesCount16 returns the number of one bits ("population count") in x.
	 124  func OnesCount16(x uint16) int {
	 125  	return int(pop8tab[x>>8] + pop8tab[x&0xff])
	 126  }
	 127  
	 128  // OnesCount32 returns the number of one bits ("population count") in x.
	 129  func OnesCount32(x uint32) int {
	 130  	return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
	 131  }
	 132  
	 133  // OnesCount64 returns the number of one bits ("population count") in x.
	 134  func OnesCount64(x uint64) int {
	 135  	// Implementation: Parallel summing of adjacent bits.
	 136  	// See "Hacker's Delight", Chap. 5: Counting Bits.
	 137  	// The following pattern shows the general approach:
	 138  	//
	 139  	//	 x = x>>1&(m0&m) + x&(m0&m)
	 140  	//	 x = x>>2&(m1&m) + x&(m1&m)
	 141  	//	 x = x>>4&(m2&m) + x&(m2&m)
	 142  	//	 x = x>>8&(m3&m) + x&(m3&m)
	 143  	//	 x = x>>16&(m4&m) + x&(m4&m)
	 144  	//	 x = x>>32&(m5&m) + x&(m5&m)
	 145  	//	 return int(x)
	 146  	//
	 147  	// Masking (& operations) can be left away when there's no
	 148  	// danger that a field's sum will carry over into the next
	 149  	// field: Since the result cannot be > 64, 8 bits is enough
	 150  	// and we can ignore the masks for the shifts by 8 and up.
	 151  	// Per "Hacker's Delight", the first line can be simplified
	 152  	// more, but it saves at best one instruction, so we leave
	 153  	// it alone for clarity.
	 154  	const m = 1<<64 - 1
	 155  	x = x>>1&(m0&m) + x&(m0&m)
	 156  	x = x>>2&(m1&m) + x&(m1&m)
	 157  	x = (x>>4 + x) & (m2 & m)
	 158  	x += x >> 8
	 159  	x += x >> 16
	 160  	x += x >> 32
	 161  	return int(x) & (1<<7 - 1)
	 162  }
	 163  
	 164  // --- RotateLeft ---
	 165  
	 166  // RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
	 167  // To rotate x right by k bits, call RotateLeft(x, -k).
	 168  //
	 169  // This function's execution time does not depend on the inputs.
	 170  func RotateLeft(x uint, k int) uint {
	 171  	if UintSize == 32 {
	 172  		return uint(RotateLeft32(uint32(x), k))
	 173  	}
	 174  	return uint(RotateLeft64(uint64(x), k))
	 175  }
	 176  
	 177  // RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
	 178  // To rotate x right by k bits, call RotateLeft8(x, -k).
	 179  //
	 180  // This function's execution time does not depend on the inputs.
	 181  func RotateLeft8(x uint8, k int) uint8 {
	 182  	const n = 8
	 183  	s := uint(k) & (n - 1)
	 184  	return x<<s | x>>(n-s)
	 185  }
	 186  
	 187  // RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
	 188  // To rotate x right by k bits, call RotateLeft16(x, -k).
	 189  //
	 190  // This function's execution time does not depend on the inputs.
	 191  func RotateLeft16(x uint16, k int) uint16 {
	 192  	const n = 16
	 193  	s := uint(k) & (n - 1)
	 194  	return x<<s | x>>(n-s)
	 195  }
	 196  
	 197  // RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
	 198  // To rotate x right by k bits, call RotateLeft32(x, -k).
	 199  //
	 200  // This function's execution time does not depend on the inputs.
	 201  func RotateLeft32(x uint32, k int) uint32 {
	 202  	const n = 32
	 203  	s := uint(k) & (n - 1)
	 204  	return x<<s | x>>(n-s)
	 205  }
	 206  
	 207  // RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
	 208  // To rotate x right by k bits, call RotateLeft64(x, -k).
	 209  //
	 210  // This function's execution time does not depend on the inputs.
	 211  func RotateLeft64(x uint64, k int) uint64 {
	 212  	const n = 64
	 213  	s := uint(k) & (n - 1)
	 214  	return x<<s | x>>(n-s)
	 215  }
	 216  
	 217  // --- Reverse ---
	 218  
	 219  // Reverse returns the value of x with its bits in reversed order.
	 220  func Reverse(x uint) uint {
	 221  	if UintSize == 32 {
	 222  		return uint(Reverse32(uint32(x)))
	 223  	}
	 224  	return uint(Reverse64(uint64(x)))
	 225  }
	 226  
	 227  // Reverse8 returns the value of x with its bits in reversed order.
	 228  func Reverse8(x uint8) uint8 {
	 229  	return rev8tab[x]
	 230  }
	 231  
	 232  // Reverse16 returns the value of x with its bits in reversed order.
	 233  func Reverse16(x uint16) uint16 {
	 234  	return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
	 235  }
	 236  
	 237  // Reverse32 returns the value of x with its bits in reversed order.
	 238  func Reverse32(x uint32) uint32 {
	 239  	const m = 1<<32 - 1
	 240  	x = x>>1&(m0&m) | x&(m0&m)<<1
	 241  	x = x>>2&(m1&m) | x&(m1&m)<<2
	 242  	x = x>>4&(m2&m) | x&(m2&m)<<4
	 243  	return ReverseBytes32(x)
	 244  }
	 245  
	 246  // Reverse64 returns the value of x with its bits in reversed order.
	 247  func Reverse64(x uint64) uint64 {
	 248  	const m = 1<<64 - 1
	 249  	x = x>>1&(m0&m) | x&(m0&m)<<1
	 250  	x = x>>2&(m1&m) | x&(m1&m)<<2
	 251  	x = x>>4&(m2&m) | x&(m2&m)<<4
	 252  	return ReverseBytes64(x)
	 253  }
	 254  
	 255  // --- ReverseBytes ---
	 256  
	 257  // ReverseBytes returns the value of x with its bytes in reversed order.
	 258  //
	 259  // This function's execution time does not depend on the inputs.
	 260  func ReverseBytes(x uint) uint {
	 261  	if UintSize == 32 {
	 262  		return uint(ReverseBytes32(uint32(x)))
	 263  	}
	 264  	return uint(ReverseBytes64(uint64(x)))
	 265  }
	 266  
	 267  // ReverseBytes16 returns the value of x with its bytes in reversed order.
	 268  //
	 269  // This function's execution time does not depend on the inputs.
	 270  func ReverseBytes16(x uint16) uint16 {
	 271  	return x>>8 | x<<8
	 272  }
	 273  
	 274  // ReverseBytes32 returns the value of x with its bytes in reversed order.
	 275  //
	 276  // This function's execution time does not depend on the inputs.
	 277  func ReverseBytes32(x uint32) uint32 {
	 278  	const m = 1<<32 - 1
	 279  	x = x>>8&(m3&m) | x&(m3&m)<<8
	 280  	return x>>16 | x<<16
	 281  }
	 282  
	 283  // ReverseBytes64 returns the value of x with its bytes in reversed order.
	 284  //
	 285  // This function's execution time does not depend on the inputs.
	 286  func ReverseBytes64(x uint64) uint64 {
	 287  	const m = 1<<64 - 1
	 288  	x = x>>8&(m3&m) | x&(m3&m)<<8
	 289  	x = x>>16&(m4&m) | x&(m4&m)<<16
	 290  	return x>>32 | x<<32
	 291  }
	 292  
	 293  // --- Len ---
	 294  
	 295  // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
	 296  func Len(x uint) int {
	 297  	if UintSize == 32 {
	 298  		return Len32(uint32(x))
	 299  	}
	 300  	return Len64(uint64(x))
	 301  }
	 302  
	 303  // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
	 304  func Len8(x uint8) int {
	 305  	return int(len8tab[x])
	 306  }
	 307  
	 308  // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
	 309  func Len16(x uint16) (n int) {
	 310  	if x >= 1<<8 {
	 311  		x >>= 8
	 312  		n = 8
	 313  	}
	 314  	return n + int(len8tab[x])
	 315  }
	 316  
	 317  // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
	 318  func Len32(x uint32) (n int) {
	 319  	if x >= 1<<16 {
	 320  		x >>= 16
	 321  		n = 16
	 322  	}
	 323  	if x >= 1<<8 {
	 324  		x >>= 8
	 325  		n += 8
	 326  	}
	 327  	return n + int(len8tab[x])
	 328  }
	 329  
	 330  // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
	 331  func Len64(x uint64) (n int) {
	 332  	if x >= 1<<32 {
	 333  		x >>= 32
	 334  		n = 32
	 335  	}
	 336  	if x >= 1<<16 {
	 337  		x >>= 16
	 338  		n += 16
	 339  	}
	 340  	if x >= 1<<8 {
	 341  		x >>= 8
	 342  		n += 8
	 343  	}
	 344  	return n + int(len8tab[x])
	 345  }
	 346  
	 347  // --- Add with carry ---
	 348  
	 349  // Add returns the sum with carry of x, y and carry: sum = x + y + carry.
	 350  // The carry input must be 0 or 1; otherwise the behavior is undefined.
	 351  // The carryOut output is guaranteed to be 0 or 1.
	 352  //
	 353  // This function's execution time does not depend on the inputs.
	 354  func Add(x, y, carry uint) (sum, carryOut uint) {
	 355  	if UintSize == 32 {
	 356  		s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
	 357  		return uint(s32), uint(c32)
	 358  	}
	 359  	s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
	 360  	return uint(s64), uint(c64)
	 361  }
	 362  
	 363  // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
	 364  // The carry input must be 0 or 1; otherwise the behavior is undefined.
	 365  // The carryOut output is guaranteed to be 0 or 1.
	 366  //
	 367  // This function's execution time does not depend on the inputs.
	 368  func Add32(x, y, carry uint32) (sum, carryOut uint32) {
	 369  	sum64 := uint64(x) + uint64(y) + uint64(carry)
	 370  	sum = uint32(sum64)
	 371  	carryOut = uint32(sum64 >> 32)
	 372  	return
	 373  }
	 374  
	 375  // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
	 376  // The carry input must be 0 or 1; otherwise the behavior is undefined.
	 377  // The carryOut output is guaranteed to be 0 or 1.
	 378  //
	 379  // This function's execution time does not depend on the inputs.
	 380  func Add64(x, y, carry uint64) (sum, carryOut uint64) {
	 381  	sum = x + y + carry
	 382  	// The sum will overflow if both top bits are set (x & y) or if one of them
	 383  	// is (x | y), and a carry from the lower place happened. If such a carry
	 384  	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
	 385  	carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
	 386  	return
	 387  }
	 388  
	 389  // --- Subtract with borrow ---
	 390  
	 391  // Sub returns the difference of x, y and borrow: diff = x - y - borrow.
	 392  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
	 393  // The borrowOut output is guaranteed to be 0 or 1.
	 394  //
	 395  // This function's execution time does not depend on the inputs.
	 396  func Sub(x, y, borrow uint) (diff, borrowOut uint) {
	 397  	if UintSize == 32 {
	 398  		d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
	 399  		return uint(d32), uint(b32)
	 400  	}
	 401  	d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
	 402  	return uint(d64), uint(b64)
	 403  }
	 404  
	 405  // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
	 406  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
	 407  // The borrowOut output is guaranteed to be 0 or 1.
	 408  //
	 409  // This function's execution time does not depend on the inputs.
	 410  func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
	 411  	diff = x - y - borrow
	 412  	// The difference will underflow if the top bit of x is not set and the top
	 413  	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
	 414  	// from the lower place happens. If that borrow happens, the result will be
	 415  	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
	 416  	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
	 417  	return
	 418  }
	 419  
	 420  // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
	 421  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
	 422  // The borrowOut output is guaranteed to be 0 or 1.
	 423  //
	 424  // This function's execution time does not depend on the inputs.
	 425  func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
	 426  	diff = x - y - borrow
	 427  	// See Sub32 for the bit logic.
	 428  	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
	 429  	return
	 430  }
	 431  
	 432  // --- Full-width multiply ---
	 433  
	 434  // Mul returns the full-width product of x and y: (hi, lo) = x * y
	 435  // with the product bits' upper half returned in hi and the lower
	 436  // half returned in lo.
	 437  //
	 438  // This function's execution time does not depend on the inputs.
	 439  func Mul(x, y uint) (hi, lo uint) {
	 440  	if UintSize == 32 {
	 441  		h, l := Mul32(uint32(x), uint32(y))
	 442  		return uint(h), uint(l)
	 443  	}
	 444  	h, l := Mul64(uint64(x), uint64(y))
	 445  	return uint(h), uint(l)
	 446  }
	 447  
	 448  // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
	 449  // with the product bits' upper half returned in hi and the lower
	 450  // half returned in lo.
	 451  //
	 452  // This function's execution time does not depend on the inputs.
	 453  func Mul32(x, y uint32) (hi, lo uint32) {
	 454  	tmp := uint64(x) * uint64(y)
	 455  	hi, lo = uint32(tmp>>32), uint32(tmp)
	 456  	return
	 457  }
	 458  
	 459  // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
	 460  // with the product bits' upper half returned in hi and the lower
	 461  // half returned in lo.
	 462  //
	 463  // This function's execution time does not depend on the inputs.
	 464  func Mul64(x, y uint64) (hi, lo uint64) {
	 465  	const mask32 = 1<<32 - 1
	 466  	x0 := x & mask32
	 467  	x1 := x >> 32
	 468  	y0 := y & mask32
	 469  	y1 := y >> 32
	 470  	w0 := x0 * y0
	 471  	t := x1*y0 + w0>>32
	 472  	w1 := t & mask32
	 473  	w2 := t >> 32
	 474  	w1 += x0 * y1
	 475  	hi = x1*y1 + w2 + w1>>32
	 476  	lo = x * y
	 477  	return
	 478  }
	 479  
	 480  // --- Full-width divide ---
	 481  
	 482  // Div returns the quotient and remainder of (hi, lo) divided by y:
	 483  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
	 484  // half in parameter hi and the lower half in parameter lo.
	 485  // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
	 486  func Div(hi, lo, y uint) (quo, rem uint) {
	 487  	if UintSize == 32 {
	 488  		q, r := Div32(uint32(hi), uint32(lo), uint32(y))
	 489  		return uint(q), uint(r)
	 490  	}
	 491  	q, r := Div64(uint64(hi), uint64(lo), uint64(y))
	 492  	return uint(q), uint(r)
	 493  }
	 494  
	 495  // Div32 returns the quotient and remainder of (hi, lo) divided by y:
	 496  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
	 497  // half in parameter hi and the lower half in parameter lo.
	 498  // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
	 499  func Div32(hi, lo, y uint32) (quo, rem uint32) {
	 500  	if y != 0 && y <= hi {
	 501  		panic(overflowError)
	 502  	}
	 503  	z := uint64(hi)<<32 | uint64(lo)
	 504  	quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
	 505  	return
	 506  }
	 507  
	 508  // Div64 returns the quotient and remainder of (hi, lo) divided by y:
	 509  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
	 510  // half in parameter hi and the lower half in parameter lo.
	 511  // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
	 512  func Div64(hi, lo, y uint64) (quo, rem uint64) {
	 513  	const (
	 514  		two32	= 1 << 32
	 515  		mask32 = two32 - 1
	 516  	)
	 517  	if y == 0 {
	 518  		panic(divideError)
	 519  	}
	 520  	if y <= hi {
	 521  		panic(overflowError)
	 522  	}
	 523  
	 524  	s := uint(LeadingZeros64(y))
	 525  	y <<= s
	 526  
	 527  	yn1 := y >> 32
	 528  	yn0 := y & mask32
	 529  	un32 := hi<<s | lo>>(64-s)
	 530  	un10 := lo << s
	 531  	un1 := un10 >> 32
	 532  	un0 := un10 & mask32
	 533  	q1 := un32 / yn1
	 534  	rhat := un32 - q1*yn1
	 535  
	 536  	for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
	 537  		q1--
	 538  		rhat += yn1
	 539  		if rhat >= two32 {
	 540  			break
	 541  		}
	 542  	}
	 543  
	 544  	un21 := un32*two32 + un1 - q1*y
	 545  	q0 := un21 / yn1
	 546  	rhat = un21 - q0*yn1
	 547  
	 548  	for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
	 549  		q0--
	 550  		rhat += yn1
	 551  		if rhat >= two32 {
	 552  			break
	 553  		}
	 554  	}
	 555  
	 556  	return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
	 557  }
	 558  
	 559  // Rem returns the remainder of (hi, lo) divided by y. Rem panics for
	 560  // y == 0 (division by zero) but, unlike Div, it doesn't panic on a
	 561  // quotient overflow.
	 562  func Rem(hi, lo, y uint) uint {
	 563  	if UintSize == 32 {
	 564  		return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
	 565  	}
	 566  	return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
	 567  }
	 568  
	 569  // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
	 570  // for y == 0 (division by zero) but, unlike Div32, it doesn't panic
	 571  // on a quotient overflow.
	 572  func Rem32(hi, lo, y uint32) uint32 {
	 573  	return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
	 574  }
	 575  
	 576  // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
	 577  // for y == 0 (division by zero) but, unlike Div64, it doesn't panic
	 578  // on a quotient overflow.
	 579  func Rem64(hi, lo, y uint64) uint64 {
	 580  	// We scale down hi so that hi < y, then use Div64 to compute the
	 581  	// rem with the guarantee that it won't panic on quotient overflow.
	 582  	// Given that
	 583  	//	 hi ≡ hi%y		(mod y)
	 584  	// we have
	 585  	//	 hi<<64 + lo ≡ (hi%y)<<64 + lo		(mod y)
	 586  	_, rem := Div64(hi%y, lo, y)
	 587  	return rem
	 588  }
	 589  

View as plain text