...

Source file src/math/cmplx/exp.go

Documentation: math/cmplx

		 1  // Copyright 2010 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package cmplx
		 6  
		 7  import "math"
		 8  
		 9  // The original C code, the long comment, and the constants
		10  // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
		11  // The go code is a simplified version of the original C.
		12  //
		13  // Cephes Math Library Release 2.8:	June, 2000
		14  // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
		15  //
		16  // The readme file at http://netlib.sandia.gov/cephes/ says:
		17  //		Some software in this archive may be from the book _Methods and
		18  // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
		19  // International, 1989) or from the Cephes Mathematical Library, a
		20  // commercial product. In either event, it is copyrighted by the author.
		21  // What you see here may be used freely but it comes with no support or
		22  // guarantee.
		23  //
		24  //	 The two known misprints in the book are repaired here in the
		25  // source listings for the gamma function and the incomplete beta
		26  // integral.
		27  //
		28  //	 Stephen L. Moshier
		29  //	 [email protected]
		30  
		31  // Complex exponential function
		32  //
		33  // DESCRIPTION:
		34  //
		35  // Returns the complex exponential of the complex argument z.
		36  //
		37  // If
		38  //		 z = x + iy,
		39  //		 r = exp(x),
		40  // then
		41  //		 w = r cos y + i r sin y.
		42  //
		43  // ACCURACY:
		44  //
		45  //											Relative error:
		46  // arithmetic	 domain		 # trials			peak				 rms
		47  //		DEC			 -10,+10			8700			 3.7e-17		 1.1e-17
		48  //		IEEE			-10,+10		 30000			 3.0e-16		 8.7e-17
		49  
		50  // Exp returns e**x, the base-e exponential of x.
		51  func Exp(x complex128) complex128 {
		52  	switch re, im := real(x), imag(x); {
		53  	case math.IsInf(re, 0):
		54  		switch {
		55  		case re > 0 && im == 0:
		56  			return x
		57  		case math.IsInf(im, 0) || math.IsNaN(im):
		58  			if re < 0 {
		59  				return complex(0, math.Copysign(0, im))
		60  			} else {
		61  				return complex(math.Inf(1.0), math.NaN())
		62  			}
		63  		}
		64  	case math.IsNaN(re):
		65  		if im == 0 {
		66  			return complex(math.NaN(), im)
		67  		}
		68  	}
		69  	r := math.Exp(real(x))
		70  	s, c := math.Sincos(imag(x))
		71  	return complex(r*c, r*s)
		72  }
		73  

View as plain text