...

Source file src/math/cmplx/log.go

Documentation: math/cmplx

		 1  // Copyright 2010 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package cmplx
		 6  
		 7  import "math"
		 8  
		 9  // The original C code, the long comment, and the constants
		10  // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
		11  // The go code is a simplified version of the original C.
		12  //
		13  // Cephes Math Library Release 2.8:	June, 2000
		14  // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
		15  //
		16  // The readme file at http://netlib.sandia.gov/cephes/ says:
		17  //		Some software in this archive may be from the book _Methods and
		18  // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
		19  // International, 1989) or from the Cephes Mathematical Library, a
		20  // commercial product. In either event, it is copyrighted by the author.
		21  // What you see here may be used freely but it comes with no support or
		22  // guarantee.
		23  //
		24  //	 The two known misprints in the book are repaired here in the
		25  // source listings for the gamma function and the incomplete beta
		26  // integral.
		27  //
		28  //	 Stephen L. Moshier
		29  //	 [email protected]
		30  
		31  // Complex natural logarithm
		32  //
		33  // DESCRIPTION:
		34  //
		35  // Returns complex logarithm to the base e (2.718...) of
		36  // the complex argument z.
		37  //
		38  // If
		39  //			 z = x + iy, r = sqrt( x**2 + y**2 ),
		40  // then
		41  //			 w = log(r) + i arctan(y/x).
		42  //
		43  // The arctangent ranges from -PI to +PI.
		44  //
		45  // ACCURACY:
		46  //
		47  //											Relative error:
		48  // arithmetic	 domain		 # trials			peak				 rms
		49  //		DEC			 -10,+10			7000			 8.5e-17		 1.9e-17
		50  //		IEEE			-10,+10		 30000			 5.0e-15		 1.1e-16
		51  //
		52  // Larger relative error can be observed for z near 1 +i0.
		53  // In IEEE arithmetic the peak absolute error is 5.2e-16, rms
		54  // absolute error 1.0e-16.
		55  
		56  // Log returns the natural logarithm of x.
		57  func Log(x complex128) complex128 {
		58  	return complex(math.Log(Abs(x)), Phase(x))
		59  }
		60  
		61  // Log10 returns the decimal logarithm of x.
		62  func Log10(x complex128) complex128 {
		63  	z := Log(x)
		64  	return complex(math.Log10E*real(z), math.Log10E*imag(z))
		65  }
		66  

View as plain text