...

Source file src/math/fma.go

Documentation: math

		 1  // Copyright 2019 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package math
		 6  
		 7  import "math/bits"
		 8  
		 9  func zero(x uint64) uint64 {
		10  	if x == 0 {
		11  		return 1
		12  	}
		13  	return 0
		14  	// branchless:
		15  	// return ((x>>1 | x&1) - 1) >> 63
		16  }
		17  
		18  func nonzero(x uint64) uint64 {
		19  	if x != 0 {
		20  		return 1
		21  	}
		22  	return 0
		23  	// branchless:
		24  	// return 1 - ((x>>1|x&1)-1)>>63
		25  }
		26  
		27  func shl(u1, u2 uint64, n uint) (r1, r2 uint64) {
		28  	r1 = u1<<n | u2>>(64-n) | u2<<(n-64)
		29  	r2 = u2 << n
		30  	return
		31  }
		32  
		33  func shr(u1, u2 uint64, n uint) (r1, r2 uint64) {
		34  	r2 = u2>>n | u1<<(64-n) | u1>>(n-64)
		35  	r1 = u1 >> n
		36  	return
		37  }
		38  
		39  // shrcompress compresses the bottom n+1 bits of the two-word
		40  // value into a single bit. the result is equal to the value
		41  // shifted to the right by n, except the result's 0th bit is
		42  // set to the bitwise OR of the bottom n+1 bits.
		43  func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) {
		44  	// TODO: Performance here is really sensitive to the
		45  	// order/placement of these branches. n == 0 is common
		46  	// enough to be in the fast path. Perhaps more measurement
		47  	// needs to be done to find the optimal order/placement?
		48  	switch {
		49  	case n == 0:
		50  		return u1, u2
		51  	case n == 64:
		52  		return 0, u1 | nonzero(u2)
		53  	case n >= 128:
		54  		return 0, nonzero(u1 | u2)
		55  	case n < 64:
		56  		r1, r2 = shr(u1, u2, n)
		57  		r2 |= nonzero(u2 & (1<<n - 1))
		58  	case n < 128:
		59  		r1, r2 = shr(u1, u2, n)
		60  		r2 |= nonzero(u1&(1<<(n-64)-1) | u2)
		61  	}
		62  	return
		63  }
		64  
		65  func lz(u1, u2 uint64) (l int32) {
		66  	l = int32(bits.LeadingZeros64(u1))
		67  	if l == 64 {
		68  		l += int32(bits.LeadingZeros64(u2))
		69  	}
		70  	return l
		71  }
		72  
		73  // split splits b into sign, biased exponent, and mantissa.
		74  // It adds the implicit 1 bit to the mantissa for normal values,
		75  // and normalizes subnormal values.
		76  func split(b uint64) (sign uint32, exp int32, mantissa uint64) {
		77  	sign = uint32(b >> 63)
		78  	exp = int32(b>>52) & mask
		79  	mantissa = b & fracMask
		80  
		81  	if exp == 0 {
		82  		// Normalize value if subnormal.
		83  		shift := uint(bits.LeadingZeros64(mantissa) - 11)
		84  		mantissa <<= shift
		85  		exp = 1 - int32(shift)
		86  	} else {
		87  		// Add implicit 1 bit
		88  		mantissa |= 1 << 52
		89  	}
		90  	return
		91  }
		92  
		93  // FMA returns x * y + z, computed with only one rounding.
		94  // (That is, FMA returns the fused multiply-add of x, y, and z.)
		95  func FMA(x, y, z float64) float64 {
		96  	bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z)
		97  
		98  	// Inf or NaN or zero involved. At most one rounding will occur.
		99  	if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf {
	 100  		return x*y + z
	 101  	}
	 102  	// Handle non-finite z separately. Evaluating x*y+z where
	 103  	// x and y are finite, but z is infinite, should always result in z.
	 104  	if bz&uvinf == uvinf {
	 105  		return z
	 106  	}
	 107  
	 108  	// Inputs are (sub)normal.
	 109  	// Split x, y, z into sign, exponent, mantissa.
	 110  	xs, xe, xm := split(bx)
	 111  	ys, ye, ym := split(by)
	 112  	zs, ze, zm := split(bz)
	 113  
	 114  	// Compute product p = x*y as sign, exponent, two-word mantissa.
	 115  	// Start with exponent. "is normal" bit isn't subtracted yet.
	 116  	pe := xe + ye - bias + 1
	 117  
	 118  	// pm1:pm2 is the double-word mantissa for the product p.
	 119  	// Shift left to leave top bit in product. Effectively
	 120  	// shifts the 106-bit product to the left by 21.
	 121  	pm1, pm2 := bits.Mul64(xm<<10, ym<<11)
	 122  	zm1, zm2 := zm<<10, uint64(0)
	 123  	ps := xs ^ ys // product sign
	 124  
	 125  	// normalize to 62nd bit
	 126  	is62zero := uint((^pm1 >> 62) & 1)
	 127  	pm1, pm2 = shl(pm1, pm2, is62zero)
	 128  	pe -= int32(is62zero)
	 129  
	 130  	// Swap addition operands so |p| >= |z|
	 131  	if pe < ze || pe == ze && pm1 < zm1 {
	 132  		ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2
	 133  	}
	 134  
	 135  	// Align significands
	 136  	zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze))
	 137  
	 138  	// Compute resulting significands, normalizing if necessary.
	 139  	var m, c uint64
	 140  	if ps == zs {
	 141  		// Adding (pm1:pm2) + (zm1:zm2)
	 142  		pm2, c = bits.Add64(pm2, zm2, 0)
	 143  		pm1, _ = bits.Add64(pm1, zm1, c)
	 144  		pe -= int32(^pm1 >> 63)
	 145  		pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63))
	 146  	} else {
	 147  		// Subtracting (pm1:pm2) - (zm1:zm2)
	 148  		// TODO: should we special-case cancellation?
	 149  		pm2, c = bits.Sub64(pm2, zm2, 0)
	 150  		pm1, _ = bits.Sub64(pm1, zm1, c)
	 151  		nz := lz(pm1, pm2)
	 152  		pe -= nz
	 153  		m, pm2 = shl(pm1, pm2, uint(nz-1))
	 154  		m |= nonzero(pm2)
	 155  	}
	 156  
	 157  	// Round and break ties to even
	 158  	if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 {
	 159  		// rounded value overflows exponent range
	 160  		return Float64frombits(uint64(ps)<<63 | uvinf)
	 161  	}
	 162  	if pe < 0 {
	 163  		n := uint(-pe)
	 164  		m = m>>n | nonzero(m&(1<<n-1))
	 165  		pe = 0
	 166  	}
	 167  	m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9)
	 168  	pe &= -int32(nonzero(m))
	 169  	return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m)
	 170  }
	 171  

View as plain text