...

Source file src/math/jn.go

Documentation: math

		 1  // Copyright 2010 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package math
		 6  
		 7  /*
		 8  	Bessel function of the first and second kinds of order n.
		 9  */
		10  
		11  // The original C code and the long comment below are
		12  // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
		13  // came with this notice. The go code is a simplified
		14  // version of the original C.
		15  //
		16  // ====================================================
		17  // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
		18  //
		19  // Developed at SunPro, a Sun Microsystems, Inc. business.
		20  // Permission to use, copy, modify, and distribute this
		21  // software is freely granted, provided that this notice
		22  // is preserved.
		23  // ====================================================
		24  //
		25  // __ieee754_jn(n, x), __ieee754_yn(n, x)
		26  // floating point Bessel's function of the 1st and 2nd kind
		27  // of order n
		28  //
		29  // Special cases:
		30  //			y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
		31  //			y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
		32  // Note 2. About jn(n,x), yn(n,x)
		33  //			For n=0, j0(x) is called,
		34  //			for n=1, j1(x) is called,
		35  //			for n<x, forward recursion is used starting
		36  //			from values of j0(x) and j1(x).
		37  //			for n>x, a continued fraction approximation to
		38  //			j(n,x)/j(n-1,x) is evaluated and then backward
		39  //			recursion is used starting from a supposed value
		40  //			for j(n,x). The resulting value of j(0,x) is
		41  //			compared with the actual value to correct the
		42  //			supposed value of j(n,x).
		43  //
		44  //			yn(n,x) is similar in all respects, except
		45  //			that forward recursion is used for all
		46  //			values of n>1.
		47  
		48  // Jn returns the order-n Bessel function of the first kind.
		49  //
		50  // Special cases are:
		51  //	Jn(n, ±Inf) = 0
		52  //	Jn(n, NaN) = NaN
		53  func Jn(n int, x float64) float64 {
		54  	const (
		55  		TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
		56  		Two302 = 1 << 302				// 2**302 0x52D0000000000000
		57  	)
		58  	// special cases
		59  	switch {
		60  	case IsNaN(x):
		61  		return x
		62  	case IsInf(x, 0):
		63  		return 0
		64  	}
		65  	// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
		66  	// Thus, J(-n, x) = J(n, -x)
		67  
		68  	if n == 0 {
		69  		return J0(x)
		70  	}
		71  	if x == 0 {
		72  		return 0
		73  	}
		74  	if n < 0 {
		75  		n, x = -n, -x
		76  	}
		77  	if n == 1 {
		78  		return J1(x)
		79  	}
		80  	sign := false
		81  	if x < 0 {
		82  		x = -x
		83  		if n&1 == 1 {
		84  			sign = true // odd n and negative x
		85  		}
		86  	}
		87  	var b float64
		88  	if float64(n) <= x {
		89  		// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
		90  		if x >= Two302 { // x > 2**302
		91  
		92  			// (x >> n**2)
		93  			//					Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
		94  			//					Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
		95  			//					Let s=sin(x), c=cos(x),
		96  			//							xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
		97  			//
		98  			//								 n		sin(xn)*sqt2		cos(xn)*sqt2
		99  			//							----------------------------------
	 100  			//								 0		 s-c						 c+s
	 101  			//								 1		-s-c						-c+s
	 102  			//								 2		-s+c						-c-s
	 103  			//								 3		 s+c						 c-s
	 104  
	 105  			var temp float64
	 106  			switch s, c := Sincos(x); n & 3 {
	 107  			case 0:
	 108  				temp = c + s
	 109  			case 1:
	 110  				temp = -c + s
	 111  			case 2:
	 112  				temp = -c - s
	 113  			case 3:
	 114  				temp = c - s
	 115  			}
	 116  			b = (1 / SqrtPi) * temp / Sqrt(x)
	 117  		} else {
	 118  			b = J1(x)
	 119  			for i, a := 1, J0(x); i < n; i++ {
	 120  				a, b = b, b*(float64(i+i)/x)-a // avoid underflow
	 121  			}
	 122  		}
	 123  	} else {
	 124  		if x < TwoM29 { // x < 2**-29
	 125  			// x is tiny, return the first Taylor expansion of J(n,x)
	 126  			// J(n,x) = 1/n!*(x/2)**n	- ...
	 127  
	 128  			if n > 33 { // underflow
	 129  				b = 0
	 130  			} else {
	 131  				temp := x * 0.5
	 132  				b = temp
	 133  				a := 1.0
	 134  				for i := 2; i <= n; i++ {
	 135  					a *= float64(i) // a = n!
	 136  					b *= temp			 // b = (x/2)**n
	 137  				}
	 138  				b /= a
	 139  			}
	 140  		} else {
	 141  			// use backward recurrence
	 142  			//											x			x**2			x**2
	 143  			//	J(n,x)/J(n-1,x) =	----	 ------	 ------	 .....
	 144  			//											2n	- 2(n+1) - 2(n+2)
	 145  			//
	 146  			//											1			1				1
	 147  			//	(for large x)	 =	----	------	 ------	 .....
	 148  			//											2n	 2(n+1)	 2(n+2)
	 149  			//											-- - ------ - ------ -
	 150  			//											 x		 x				 x
	 151  			//
	 152  			// Let w = 2n/x and h=2/x, then the above quotient
	 153  			// is equal to the continued fraction:
	 154  			//									1
	 155  			//			= -----------------------
	 156  			//										 1
	 157  			//				 w - -----------------
	 158  			//												1
	 159  			//							w+h - ---------
	 160  			//										 w+2h - ...
	 161  			//
	 162  			// To determine how many terms needed, let
	 163  			// Q(0) = w, Q(1) = w(w+h) - 1,
	 164  			// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
	 165  			// When Q(k) > 1e4	good for single
	 166  			// When Q(k) > 1e9	good for double
	 167  			// When Q(k) > 1e17	good for quadruple
	 168  
	 169  			// determine k
	 170  			w := float64(n+n) / x
	 171  			h := 2 / x
	 172  			q0 := w
	 173  			z := w + h
	 174  			q1 := w*z - 1
	 175  			k := 1
	 176  			for q1 < 1e9 {
	 177  				k++
	 178  				z += h
	 179  				q0, q1 = q1, z*q1-q0
	 180  			}
	 181  			m := n + n
	 182  			t := 0.0
	 183  			for i := 2 * (n + k); i >= m; i -= 2 {
	 184  				t = 1 / (float64(i)/x - t)
	 185  			}
	 186  			a := t
	 187  			b = 1
	 188  			//	estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
	 189  			//	Hence, if n*(log(2n/x)) > ...
	 190  			//	single 8.8722839355e+01
	 191  			//	double 7.09782712893383973096e+02
	 192  			//	long double 1.1356523406294143949491931077970765006170e+04
	 193  			//	then recurrent value may overflow and the result is
	 194  			//	likely underflow to zero
	 195  
	 196  			tmp := float64(n)
	 197  			v := 2 / x
	 198  			tmp = tmp * Log(Abs(v*tmp))
	 199  			if tmp < 7.09782712893383973096e+02 {
	 200  				for i := n - 1; i > 0; i-- {
	 201  					di := float64(i + i)
	 202  					a, b = b, b*di/x-a
	 203  				}
	 204  			} else {
	 205  				for i := n - 1; i > 0; i-- {
	 206  					di := float64(i + i)
	 207  					a, b = b, b*di/x-a
	 208  					// scale b to avoid spurious overflow
	 209  					if b > 1e100 {
	 210  						a /= b
	 211  						t /= b
	 212  						b = 1
	 213  					}
	 214  				}
	 215  			}
	 216  			b = t * J0(x) / b
	 217  		}
	 218  	}
	 219  	if sign {
	 220  		return -b
	 221  	}
	 222  	return b
	 223  }
	 224  
	 225  // Yn returns the order-n Bessel function of the second kind.
	 226  //
	 227  // Special cases are:
	 228  //	Yn(n, +Inf) = 0
	 229  //	Yn(n ≥ 0, 0) = -Inf
	 230  //	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
	 231  //	Yn(n, x < 0) = NaN
	 232  //	Yn(n, NaN) = NaN
	 233  func Yn(n int, x float64) float64 {
	 234  	const Two302 = 1 << 302 // 2**302 0x52D0000000000000
	 235  	// special cases
	 236  	switch {
	 237  	case x < 0 || IsNaN(x):
	 238  		return NaN()
	 239  	case IsInf(x, 1):
	 240  		return 0
	 241  	}
	 242  
	 243  	if n == 0 {
	 244  		return Y0(x)
	 245  	}
	 246  	if x == 0 {
	 247  		if n < 0 && n&1 == 1 {
	 248  			return Inf(1)
	 249  		}
	 250  		return Inf(-1)
	 251  	}
	 252  	sign := false
	 253  	if n < 0 {
	 254  		n = -n
	 255  		if n&1 == 1 {
	 256  			sign = true // sign true if n < 0 && |n| odd
	 257  		}
	 258  	}
	 259  	if n == 1 {
	 260  		if sign {
	 261  			return -Y1(x)
	 262  		}
	 263  		return Y1(x)
	 264  	}
	 265  	var b float64
	 266  	if x >= Two302 { // x > 2**302
	 267  		// (x >> n**2)
	 268  		//			Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
	 269  		//			Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
	 270  		//			Let s=sin(x), c=cos(x),
	 271  		//		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
	 272  		//
	 273  		//			 n	sin(xn)*sqt2	cos(xn)*sqt2
	 274  		//		----------------------------------
	 275  		//			 0	 s-c		 c+s
	 276  		//			 1	-s-c 		-c+s
	 277  		//			 2	-s+c		-c-s
	 278  		//			 3	 s+c		 c-s
	 279  
	 280  		var temp float64
	 281  		switch s, c := Sincos(x); n & 3 {
	 282  		case 0:
	 283  			temp = s - c
	 284  		case 1:
	 285  			temp = -s - c
	 286  		case 2:
	 287  			temp = -s + c
	 288  		case 3:
	 289  			temp = s + c
	 290  		}
	 291  		b = (1 / SqrtPi) * temp / Sqrt(x)
	 292  	} else {
	 293  		a := Y0(x)
	 294  		b = Y1(x)
	 295  		// quit if b is -inf
	 296  		for i := 1; i < n && !IsInf(b, -1); i++ {
	 297  			a, b = b, (float64(i+i)/x)*b-a
	 298  		}
	 299  	}
	 300  	if sign {
	 301  		return -b
	 302  	}
	 303  	return b
	 304  }
	 305  

View as plain text