...

Source file src/regexp/syntax/simplify.go

Documentation: regexp/syntax

		 1  // Copyright 2011 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package syntax
		 6  
		 7  // Simplify returns a regexp equivalent to re but without counted repetitions
		 8  // and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
		 9  // The resulting regexp will execute correctly but its string representation
		10  // will not produce the same parse tree, because capturing parentheses
		11  // may have been duplicated or removed. For example, the simplified form
		12  // for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
		13  // The returned regexp may share structure with or be the original.
		14  func (re *Regexp) Simplify() *Regexp {
		15  	if re == nil {
		16  		return nil
		17  	}
		18  	switch re.Op {
		19  	case OpCapture, OpConcat, OpAlternate:
		20  		// Simplify children, building new Regexp if children change.
		21  		nre := re
		22  		for i, sub := range re.Sub {
		23  			nsub := sub.Simplify()
		24  			if nre == re && nsub != sub {
		25  				// Start a copy.
		26  				nre = new(Regexp)
		27  				*nre = *re
		28  				nre.Rune = nil
		29  				nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
		30  			}
		31  			if nre != re {
		32  				nre.Sub = append(nre.Sub, nsub)
		33  			}
		34  		}
		35  		return nre
		36  
		37  	case OpStar, OpPlus, OpQuest:
		38  		sub := re.Sub[0].Simplify()
		39  		return simplify1(re.Op, re.Flags, sub, re)
		40  
		41  	case OpRepeat:
		42  		// Special special case: x{0} matches the empty string
		43  		// and doesn't even need to consider x.
		44  		if re.Min == 0 && re.Max == 0 {
		45  			return &Regexp{Op: OpEmptyMatch}
		46  		}
		47  
		48  		// The fun begins.
		49  		sub := re.Sub[0].Simplify()
		50  
		51  		// x{n,} means at least n matches of x.
		52  		if re.Max == -1 {
		53  			// Special case: x{0,} is x*.
		54  			if re.Min == 0 {
		55  				return simplify1(OpStar, re.Flags, sub, nil)
		56  			}
		57  
		58  			// Special case: x{1,} is x+.
		59  			if re.Min == 1 {
		60  				return simplify1(OpPlus, re.Flags, sub, nil)
		61  			}
		62  
		63  			// General case: x{4,} is xxxx+.
		64  			nre := &Regexp{Op: OpConcat}
		65  			nre.Sub = nre.Sub0[:0]
		66  			for i := 0; i < re.Min-1; i++ {
		67  				nre.Sub = append(nre.Sub, sub)
		68  			}
		69  			nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
		70  			return nre
		71  		}
		72  
		73  		// Special case x{0} handled above.
		74  
		75  		// Special case: x{1} is just x.
		76  		if re.Min == 1 && re.Max == 1 {
		77  			return sub
		78  		}
		79  
		80  		// General case: x{n,m} means n copies of x and m copies of x?
		81  		// The machine will do less work if we nest the final m copies,
		82  		// so that x{2,5} = xx(x(x(x)?)?)?
		83  
		84  		// Build leading prefix: xx.
		85  		var prefix *Regexp
		86  		if re.Min > 0 {
		87  			prefix = &Regexp{Op: OpConcat}
		88  			prefix.Sub = prefix.Sub0[:0]
		89  			for i := 0; i < re.Min; i++ {
		90  				prefix.Sub = append(prefix.Sub, sub)
		91  			}
		92  		}
		93  
		94  		// Build and attach suffix: (x(x(x)?)?)?
		95  		if re.Max > re.Min {
		96  			suffix := simplify1(OpQuest, re.Flags, sub, nil)
		97  			for i := re.Min + 1; i < re.Max; i++ {
		98  				nre2 := &Regexp{Op: OpConcat}
		99  				nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
	 100  				suffix = simplify1(OpQuest, re.Flags, nre2, nil)
	 101  			}
	 102  			if prefix == nil {
	 103  				return suffix
	 104  			}
	 105  			prefix.Sub = append(prefix.Sub, suffix)
	 106  		}
	 107  		if prefix != nil {
	 108  			return prefix
	 109  		}
	 110  
	 111  		// Some degenerate case like min > max or min < max < 0.
	 112  		// Handle as impossible match.
	 113  		return &Regexp{Op: OpNoMatch}
	 114  	}
	 115  
	 116  	return re
	 117  }
	 118  
	 119  // simplify1 implements Simplify for the unary OpStar,
	 120  // OpPlus, and OpQuest operators. It returns the simple regexp
	 121  // equivalent to
	 122  //
	 123  //	Regexp{Op: op, Flags: flags, Sub: {sub}}
	 124  //
	 125  // under the assumption that sub is already simple, and
	 126  // without first allocating that structure. If the regexp
	 127  // to be returned turns out to be equivalent to re, simplify1
	 128  // returns re instead.
	 129  //
	 130  // simplify1 is factored out of Simplify because the implementation
	 131  // for other operators generates these unary expressions.
	 132  // Letting them call simplify1 makes sure the expressions they
	 133  // generate are simple.
	 134  func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
	 135  	// Special case: repeat the empty string as much as
	 136  	// you want, but it's still the empty string.
	 137  	if sub.Op == OpEmptyMatch {
	 138  		return sub
	 139  	}
	 140  	// The operators are idempotent if the flags match.
	 141  	if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
	 142  		return sub
	 143  	}
	 144  	if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
	 145  		return re
	 146  	}
	 147  
	 148  	re = &Regexp{Op: op, Flags: flags}
	 149  	re.Sub = append(re.Sub0[:0], sub)
	 150  	return re
	 151  }
	 152  

View as plain text