...

Source file src/runtime/histogram.go

Documentation: runtime

		 1  // Copyright 2020 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package runtime
		 6  
		 7  import (
		 8  	"runtime/internal/atomic"
		 9  	"runtime/internal/sys"
		10  	"unsafe"
		11  )
		12  
		13  const (
		14  	// For the time histogram type, we use an HDR histogram.
		15  	// Values are placed in super-buckets based solely on the most
		16  	// significant set bit. Thus, super-buckets are power-of-2 sized.
		17  	// Values are then placed into sub-buckets based on the value of
		18  	// the next timeHistSubBucketBits most significant bits. Thus,
		19  	// sub-buckets are linear within a super-bucket.
		20  	//
		21  	// Therefore, the number of sub-buckets (timeHistNumSubBuckets)
		22  	// defines the error. This error may be computed as
		23  	// 1/timeHistNumSubBuckets*100%. For example, for 16 sub-buckets
		24  	// per super-bucket the error is approximately 6%.
		25  	//
		26  	// The number of super-buckets (timeHistNumSuperBuckets), on the
		27  	// other hand, defines the range. To reserve room for sub-buckets,
		28  	// bit timeHistSubBucketBits is the first bit considered for
		29  	// super-buckets, so super-bucket indices are adjusted accordingly.
		30  	//
		31  	// As an example, consider 45 super-buckets with 16 sub-buckets.
		32  	//
		33  	//		00110
		34  	//		^----
		35  	//		│	^
		36  	//		│	└---- Lowest 4 bits -> sub-bucket 6
		37  	//		└------- Bit 4 unset -> super-bucket 0
		38  	//
		39  	//		10110
		40  	//		^----
		41  	//		│	^
		42  	//		│	└---- Next 4 bits -> sub-bucket 6
		43  	//		└------- Bit 4 set -> super-bucket 1
		44  	//		100010
		45  	//		^----^
		46  	//		│	^ └-- Lower bits ignored
		47  	//		│	└---- Next 4 bits -> sub-bucket 1
		48  	//		└------- Bit 5 set -> super-bucket 2
		49  	//
		50  	// Following this pattern, super-bucket 44 will have the bit 47 set. We don't
		51  	// have any buckets for higher values, so the highest sub-bucket will
		52  	// contain values of 2^48-1 nanoseconds or approx. 3 days. This range is
		53  	// more than enough to handle durations produced by the runtime.
		54  	timeHistSubBucketBits	 = 4
		55  	timeHistNumSubBuckets	 = 1 << timeHistSubBucketBits
		56  	timeHistNumSuperBuckets = 45
		57  	timeHistTotalBuckets		= timeHistNumSuperBuckets*timeHistNumSubBuckets + 1
		58  )
		59  
		60  // timeHistogram represents a distribution of durations in
		61  // nanoseconds.
		62  //
		63  // The accuracy and range of the histogram is defined by the
		64  // timeHistSubBucketBits and timeHistNumSuperBuckets constants.
		65  //
		66  // It is an HDR histogram with exponentially-distributed
		67  // buckets and linearly distributed sub-buckets.
		68  //
		69  // Counts in the histogram are updated atomically, so it is safe
		70  // for concurrent use. It is also safe to read all the values
		71  // atomically.
		72  type timeHistogram struct {
		73  	counts [timeHistNumSuperBuckets * timeHistNumSubBuckets]uint64
		74  
		75  	// underflow counts all the times we got a negative duration
		76  	// sample. Because of how time works on some platforms, it's
		77  	// possible to measure negative durations. We could ignore them,
		78  	// but we record them anyway because it's better to have some
		79  	// signal that it's happening than just missing samples.
		80  	underflow uint64
		81  }
		82  
		83  // record adds the given duration to the distribution.
		84  //
		85  // Disallow preemptions and stack growths because this function
		86  // may run in sensitive locations.
		87  //go:nosplit
		88  func (h *timeHistogram) record(duration int64) {
		89  	if duration < 0 {
		90  		atomic.Xadd64(&h.underflow, 1)
		91  		return
		92  	}
		93  	// The index of the exponential bucket is just the index
		94  	// of the highest set bit adjusted for how many bits we
		95  	// use for the subbucket. Note that it's timeHistSubBucketsBits-1
		96  	// because we use the 0th bucket to hold values < timeHistNumSubBuckets.
		97  	var superBucket, subBucket uint
		98  	if duration >= timeHistNumSubBuckets {
		99  		// At this point, we know the duration value will always be
	 100  		// at least timeHistSubBucketsBits long.
	 101  		superBucket = uint(sys.Len64(uint64(duration))) - timeHistSubBucketBits
	 102  		if superBucket*timeHistNumSubBuckets >= uint(len(h.counts)) {
	 103  			// The bucket index we got is larger than what we support, so
	 104  			// include this count in the highest bucket, which extends to
	 105  			// infinity.
	 106  			superBucket = timeHistNumSuperBuckets - 1
	 107  			subBucket = timeHistNumSubBuckets - 1
	 108  		} else {
	 109  			// The linear subbucket index is just the timeHistSubBucketsBits
	 110  			// bits after the top bit. To extract that value, shift down
	 111  			// the duration such that we leave the top bit and the next bits
	 112  			// intact, then extract the index.
	 113  			subBucket = uint((duration >> (superBucket - 1)) % timeHistNumSubBuckets)
	 114  		}
	 115  	} else {
	 116  		subBucket = uint(duration)
	 117  	}
	 118  	atomic.Xadd64(&h.counts[superBucket*timeHistNumSubBuckets+subBucket], 1)
	 119  }
	 120  
	 121  const (
	 122  	fInf		= 0x7FF0000000000000
	 123  	fNegInf = 0xFFF0000000000000
	 124  )
	 125  
	 126  func float64Inf() float64 {
	 127  	inf := uint64(fInf)
	 128  	return *(*float64)(unsafe.Pointer(&inf))
	 129  }
	 130  
	 131  func float64NegInf() float64 {
	 132  	inf := uint64(fNegInf)
	 133  	return *(*float64)(unsafe.Pointer(&inf))
	 134  }
	 135  
	 136  // timeHistogramMetricsBuckets generates a slice of boundaries for
	 137  // the timeHistogram. These boundaries are represented in seconds,
	 138  // not nanoseconds like the timeHistogram represents durations.
	 139  func timeHistogramMetricsBuckets() []float64 {
	 140  	b := make([]float64, timeHistTotalBuckets+1)
	 141  	b[0] = float64NegInf()
	 142  	// Super-bucket 0 has no bits above timeHistSubBucketBits
	 143  	// set, so just iterate over each bucket and assign the
	 144  	// incrementing bucket.
	 145  	for i := 0; i < timeHistNumSubBuckets; i++ {
	 146  		bucketNanos := uint64(i)
	 147  		b[i+1] = float64(bucketNanos) / 1e9
	 148  	}
	 149  	// Generate the rest of the super-buckets. It's easier to reason
	 150  	// about if we cut out the 0'th bucket, so subtract one since
	 151  	// we just handled that bucket.
	 152  	for i := 0; i < timeHistNumSuperBuckets-1; i++ {
	 153  		for j := 0; j < timeHistNumSubBuckets; j++ {
	 154  			// Set the super-bucket bit.
	 155  			bucketNanos := uint64(1) << (i + timeHistSubBucketBits)
	 156  			// Set the sub-bucket bits.
	 157  			bucketNanos |= uint64(j) << i
	 158  			// The index for this bucket is going to be the (i+1)'th super bucket
	 159  			// (note that we're starting from zero, but handled the first super-bucket
	 160  			// earlier, so we need to compensate), and the j'th sub bucket.
	 161  			// Add 1 because we left space for -Inf.
	 162  			bucketIndex := (i+1)*timeHistNumSubBuckets + j + 1
	 163  			// Convert nanoseconds to seconds via a division.
	 164  			// These values will all be exactly representable by a float64.
	 165  			b[bucketIndex] = float64(bucketNanos) / 1e9
	 166  		}
	 167  	}
	 168  	b[len(b)-1] = float64Inf()
	 169  	return b
	 170  }
	 171  

View as plain text