...

Source file src/runtime/mcache.go

Documentation: runtime

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package runtime
		 6  
		 7  import (
		 8  	"runtime/internal/atomic"
		 9  	"unsafe"
		10  )
		11  
		12  // Per-thread (in Go, per-P) cache for small objects.
		13  // This includes a small object cache and local allocation stats.
		14  // No locking needed because it is per-thread (per-P).
		15  //
		16  // mcaches are allocated from non-GC'd memory, so any heap pointers
		17  // must be specially handled.
		18  //
		19  //go:notinheap
		20  type mcache struct {
		21  	// The following members are accessed on every malloc,
		22  	// so they are grouped here for better caching.
		23  	nextSample uintptr // trigger heap sample after allocating this many bytes
		24  	scanAlloc	uintptr // bytes of scannable heap allocated
		25  
		26  	// Allocator cache for tiny objects w/o pointers.
		27  	// See "Tiny allocator" comment in malloc.go.
		28  
		29  	// tiny points to the beginning of the current tiny block, or
		30  	// nil if there is no current tiny block.
		31  	//
		32  	// tiny is a heap pointer. Since mcache is in non-GC'd memory,
		33  	// we handle it by clearing it in releaseAll during mark
		34  	// termination.
		35  	//
		36  	// tinyAllocs is the number of tiny allocations performed
		37  	// by the P that owns this mcache.
		38  	tiny			 uintptr
		39  	tinyoffset uintptr
		40  	tinyAllocs uintptr
		41  
		42  	// The rest is not accessed on every malloc.
		43  
		44  	alloc [numSpanClasses]*mspan // spans to allocate from, indexed by spanClass
		45  
		46  	stackcache [_NumStackOrders]stackfreelist
		47  
		48  	// flushGen indicates the sweepgen during which this mcache
		49  	// was last flushed. If flushGen != mheap_.sweepgen, the spans
		50  	// in this mcache are stale and need to the flushed so they
		51  	// can be swept. This is done in acquirep.
		52  	flushGen uint32
		53  }
		54  
		55  // A gclink is a node in a linked list of blocks, like mlink,
		56  // but it is opaque to the garbage collector.
		57  // The GC does not trace the pointers during collection,
		58  // and the compiler does not emit write barriers for assignments
		59  // of gclinkptr values. Code should store references to gclinks
		60  // as gclinkptr, not as *gclink.
		61  type gclink struct {
		62  	next gclinkptr
		63  }
		64  
		65  // A gclinkptr is a pointer to a gclink, but it is opaque
		66  // to the garbage collector.
		67  type gclinkptr uintptr
		68  
		69  // ptr returns the *gclink form of p.
		70  // The result should be used for accessing fields, not stored
		71  // in other data structures.
		72  func (p gclinkptr) ptr() *gclink {
		73  	return (*gclink)(unsafe.Pointer(p))
		74  }
		75  
		76  type stackfreelist struct {
		77  	list gclinkptr // linked list of free stacks
		78  	size uintptr	 // total size of stacks in list
		79  }
		80  
		81  // dummy mspan that contains no free objects.
		82  var emptymspan mspan
		83  
		84  func allocmcache() *mcache {
		85  	var c *mcache
		86  	systemstack(func() {
		87  		lock(&mheap_.lock)
		88  		c = (*mcache)(mheap_.cachealloc.alloc())
		89  		c.flushGen = mheap_.sweepgen
		90  		unlock(&mheap_.lock)
		91  	})
		92  	for i := range c.alloc {
		93  		c.alloc[i] = &emptymspan
		94  	}
		95  	c.nextSample = nextSample()
		96  	return c
		97  }
		98  
		99  // freemcache releases resources associated with this
	 100  // mcache and puts the object onto a free list.
	 101  //
	 102  // In some cases there is no way to simply release
	 103  // resources, such as statistics, so donate them to
	 104  // a different mcache (the recipient).
	 105  func freemcache(c *mcache) {
	 106  	systemstack(func() {
	 107  		c.releaseAll()
	 108  		stackcache_clear(c)
	 109  
	 110  		// NOTE(rsc,rlh): If gcworkbuffree comes back, we need to coordinate
	 111  		// with the stealing of gcworkbufs during garbage collection to avoid
	 112  		// a race where the workbuf is double-freed.
	 113  		// gcworkbuffree(c.gcworkbuf)
	 114  
	 115  		lock(&mheap_.lock)
	 116  		mheap_.cachealloc.free(unsafe.Pointer(c))
	 117  		unlock(&mheap_.lock)
	 118  	})
	 119  }
	 120  
	 121  // getMCache is a convenience function which tries to obtain an mcache.
	 122  //
	 123  // Returns nil if we're not bootstrapping or we don't have a P. The caller's
	 124  // P must not change, so we must be in a non-preemptible state.
	 125  func getMCache() *mcache {
	 126  	// Grab the mcache, since that's where stats live.
	 127  	pp := getg().m.p.ptr()
	 128  	var c *mcache
	 129  	if pp == nil {
	 130  		// We will be called without a P while bootstrapping,
	 131  		// in which case we use mcache0, which is set in mallocinit.
	 132  		// mcache0 is cleared when bootstrapping is complete,
	 133  		// by procresize.
	 134  		c = mcache0
	 135  	} else {
	 136  		c = pp.mcache
	 137  	}
	 138  	return c
	 139  }
	 140  
	 141  // refill acquires a new span of span class spc for c. This span will
	 142  // have at least one free object. The current span in c must be full.
	 143  //
	 144  // Must run in a non-preemptible context since otherwise the owner of
	 145  // c could change.
	 146  func (c *mcache) refill(spc spanClass) {
	 147  	// Return the current cached span to the central lists.
	 148  	s := c.alloc[spc]
	 149  
	 150  	if uintptr(s.allocCount) != s.nelems {
	 151  		throw("refill of span with free space remaining")
	 152  	}
	 153  	if s != &emptymspan {
	 154  		// Mark this span as no longer cached.
	 155  		if s.sweepgen != mheap_.sweepgen+3 {
	 156  			throw("bad sweepgen in refill")
	 157  		}
	 158  		mheap_.central[spc].mcentral.uncacheSpan(s)
	 159  	}
	 160  
	 161  	// Get a new cached span from the central lists.
	 162  	s = mheap_.central[spc].mcentral.cacheSpan()
	 163  	if s == nil {
	 164  		throw("out of memory")
	 165  	}
	 166  
	 167  	if uintptr(s.allocCount) == s.nelems {
	 168  		throw("span has no free space")
	 169  	}
	 170  
	 171  	// Indicate that this span is cached and prevent asynchronous
	 172  	// sweeping in the next sweep phase.
	 173  	s.sweepgen = mheap_.sweepgen + 3
	 174  
	 175  	// Assume all objects from this span will be allocated in the
	 176  	// mcache. If it gets uncached, we'll adjust this.
	 177  	stats := memstats.heapStats.acquire()
	 178  	atomic.Xadd64(&stats.smallAllocCount[spc.sizeclass()], int64(s.nelems)-int64(s.allocCount))
	 179  
	 180  	// Flush tinyAllocs.
	 181  	if spc == tinySpanClass {
	 182  		atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
	 183  		c.tinyAllocs = 0
	 184  	}
	 185  	memstats.heapStats.release()
	 186  
	 187  	// Update gcController.heapLive with the same assumption.
	 188  	usedBytes := uintptr(s.allocCount) * s.elemsize
	 189  	atomic.Xadd64(&gcController.heapLive, int64(s.npages*pageSize)-int64(usedBytes))
	 190  
	 191  	// While we're here, flush scanAlloc, since we have to call
	 192  	// revise anyway.
	 193  	atomic.Xadd64(&gcController.heapScan, int64(c.scanAlloc))
	 194  	c.scanAlloc = 0
	 195  
	 196  	if trace.enabled {
	 197  		// gcController.heapLive changed.
	 198  		traceHeapAlloc()
	 199  	}
	 200  	if gcBlackenEnabled != 0 {
	 201  		// gcController.heapLive and heapScan changed.
	 202  		gcController.revise()
	 203  	}
	 204  
	 205  	c.alloc[spc] = s
	 206  }
	 207  
	 208  // allocLarge allocates a span for a large object.
	 209  // The boolean result indicates whether the span is known-zeroed.
	 210  // If it did not need to be zeroed, it may not have been zeroed;
	 211  // but if it came directly from the OS, it is already zeroed.
	 212  func (c *mcache) allocLarge(size uintptr, needzero bool, noscan bool) (*mspan, bool) {
	 213  	if size+_PageSize < size {
	 214  		throw("out of memory")
	 215  	}
	 216  	npages := size >> _PageShift
	 217  	if size&_PageMask != 0 {
	 218  		npages++
	 219  	}
	 220  
	 221  	// Deduct credit for this span allocation and sweep if
	 222  	// necessary. mHeap_Alloc will also sweep npages, so this only
	 223  	// pays the debt down to npage pages.
	 224  	deductSweepCredit(npages*_PageSize, npages)
	 225  
	 226  	spc := makeSpanClass(0, noscan)
	 227  	s, isZeroed := mheap_.alloc(npages, spc, needzero)
	 228  	if s == nil {
	 229  		throw("out of memory")
	 230  	}
	 231  	stats := memstats.heapStats.acquire()
	 232  	atomic.Xadd64(&stats.largeAlloc, int64(npages*pageSize))
	 233  	atomic.Xadd64(&stats.largeAllocCount, 1)
	 234  	memstats.heapStats.release()
	 235  
	 236  	// Update gcController.heapLive and revise pacing if needed.
	 237  	atomic.Xadd64(&gcController.heapLive, int64(npages*pageSize))
	 238  	if trace.enabled {
	 239  		// Trace that a heap alloc occurred because gcController.heapLive changed.
	 240  		traceHeapAlloc()
	 241  	}
	 242  	if gcBlackenEnabled != 0 {
	 243  		gcController.revise()
	 244  	}
	 245  
	 246  	// Put the large span in the mcentral swept list so that it's
	 247  	// visible to the background sweeper.
	 248  	mheap_.central[spc].mcentral.fullSwept(mheap_.sweepgen).push(s)
	 249  	s.limit = s.base() + size
	 250  	heapBitsForAddr(s.base()).initSpan(s)
	 251  	return s, isZeroed
	 252  }
	 253  
	 254  func (c *mcache) releaseAll() {
	 255  	// Take this opportunity to flush scanAlloc.
	 256  	atomic.Xadd64(&gcController.heapScan, int64(c.scanAlloc))
	 257  	c.scanAlloc = 0
	 258  
	 259  	sg := mheap_.sweepgen
	 260  	for i := range c.alloc {
	 261  		s := c.alloc[i]
	 262  		if s != &emptymspan {
	 263  			// Adjust nsmallalloc in case the span wasn't fully allocated.
	 264  			n := int64(s.nelems) - int64(s.allocCount)
	 265  			stats := memstats.heapStats.acquire()
	 266  			atomic.Xadd64(&stats.smallAllocCount[spanClass(i).sizeclass()], -n)
	 267  			memstats.heapStats.release()
	 268  			if s.sweepgen != sg+1 {
	 269  				// refill conservatively counted unallocated slots in gcController.heapLive.
	 270  				// Undo this.
	 271  				//
	 272  				// If this span was cached before sweep, then
	 273  				// gcController.heapLive was totally recomputed since
	 274  				// caching this span, so we don't do this for
	 275  				// stale spans.
	 276  				atomic.Xadd64(&gcController.heapLive, -n*int64(s.elemsize))
	 277  			}
	 278  			// Release the span to the mcentral.
	 279  			mheap_.central[i].mcentral.uncacheSpan(s)
	 280  			c.alloc[i] = &emptymspan
	 281  		}
	 282  	}
	 283  	// Clear tinyalloc pool.
	 284  	c.tiny = 0
	 285  	c.tinyoffset = 0
	 286  
	 287  	// Flush tinyAllocs.
	 288  	stats := memstats.heapStats.acquire()
	 289  	atomic.Xadd64(&stats.tinyAllocCount, int64(c.tinyAllocs))
	 290  	c.tinyAllocs = 0
	 291  	memstats.heapStats.release()
	 292  
	 293  	// Updated heapScan and possible gcController.heapLive.
	 294  	if gcBlackenEnabled != 0 {
	 295  		gcController.revise()
	 296  	}
	 297  }
	 298  
	 299  // prepareForSweep flushes c if the system has entered a new sweep phase
	 300  // since c was populated. This must happen between the sweep phase
	 301  // starting and the first allocation from c.
	 302  func (c *mcache) prepareForSweep() {
	 303  	// Alternatively, instead of making sure we do this on every P
	 304  	// between starting the world and allocating on that P, we
	 305  	// could leave allocate-black on, allow allocation to continue
	 306  	// as usual, use a ragged barrier at the beginning of sweep to
	 307  	// ensure all cached spans are swept, and then disable
	 308  	// allocate-black. However, with this approach it's difficult
	 309  	// to avoid spilling mark bits into the *next* GC cycle.
	 310  	sg := mheap_.sweepgen
	 311  	if c.flushGen == sg {
	 312  		return
	 313  	} else if c.flushGen != sg-2 {
	 314  		println("bad flushGen", c.flushGen, "in prepareForSweep; sweepgen", sg)
	 315  		throw("bad flushGen")
	 316  	}
	 317  	c.releaseAll()
	 318  	stackcache_clear(c)
	 319  	atomic.Store(&c.flushGen, mheap_.sweepgen) // Synchronizes with gcStart
	 320  }
	 321  

View as plain text