...

Source file src/runtime/mpagealloc.go

Documentation: runtime

		 1  // Copyright 2019 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // Page allocator.
		 6  //
		 7  // The page allocator manages mapped pages (defined by pageSize, NOT
		 8  // physPageSize) for allocation and re-use. It is embedded into mheap.
		 9  //
		10  // Pages are managed using a bitmap that is sharded into chunks.
		11  // In the bitmap, 1 means in-use, and 0 means free. The bitmap spans the
		12  // process's address space. Chunks are managed in a sparse-array-style structure
		13  // similar to mheap.arenas, since the bitmap may be large on some systems.
		14  //
		15  // The bitmap is efficiently searched by using a radix tree in combination
		16  // with fast bit-wise intrinsics. Allocation is performed using an address-ordered
		17  // first-fit approach.
		18  //
		19  // Each entry in the radix tree is a summary that describes three properties of
		20  // a particular region of the address space: the number of contiguous free pages
		21  // at the start and end of the region it represents, and the maximum number of
		22  // contiguous free pages found anywhere in that region.
		23  //
		24  // Each level of the radix tree is stored as one contiguous array, which represents
		25  // a different granularity of subdivision of the processes' address space. Thus, this
		26  // radix tree is actually implicit in these large arrays, as opposed to having explicit
		27  // dynamically-allocated pointer-based node structures. Naturally, these arrays may be
		28  // quite large for system with large address spaces, so in these cases they are mapped
		29  // into memory as needed. The leaf summaries of the tree correspond to a bitmap chunk.
		30  //
		31  // The root level (referred to as L0 and index 0 in pageAlloc.summary) has each
		32  // summary represent the largest section of address space (16 GiB on 64-bit systems),
		33  // with each subsequent level representing successively smaller subsections until we
		34  // reach the finest granularity at the leaves, a chunk.
		35  //
		36  // More specifically, each summary in each level (except for leaf summaries)
		37  // represents some number of entries in the following level. For example, each
		38  // summary in the root level may represent a 16 GiB region of address space,
		39  // and in the next level there could be 8 corresponding entries which represent 2
		40  // GiB subsections of that 16 GiB region, each of which could correspond to 8
		41  // entries in the next level which each represent 256 MiB regions, and so on.
		42  //
		43  // Thus, this design only scales to heaps so large, but can always be extended to
		44  // larger heaps by simply adding levels to the radix tree, which mostly costs
		45  // additional virtual address space. The choice of managing large arrays also means
		46  // that a large amount of virtual address space may be reserved by the runtime.
		47  
		48  package runtime
		49  
		50  import (
		51  	"runtime/internal/atomic"
		52  	"unsafe"
		53  )
		54  
		55  const (
		56  	// The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider
		57  	// in the bitmap at once.
		58  	pallocChunkPages		= 1 << logPallocChunkPages
		59  	pallocChunkBytes		= pallocChunkPages * pageSize
		60  	logPallocChunkPages = 9
		61  	logPallocChunkBytes = logPallocChunkPages + pageShift
		62  
		63  	// The number of radix bits for each level.
		64  	//
		65  	// The value of 3 is chosen such that the block of summaries we need to scan at
		66  	// each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is
		67  	// close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree
		68  	// levels perfectly into the 21-bit pallocBits summary field at the root level.
		69  	//
		70  	// The following equation explains how each of the constants relate:
		71  	// summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits
		72  	//
		73  	// summaryLevels is an architecture-dependent value defined in mpagealloc_*.go.
		74  	summaryLevelBits = 3
		75  	summaryL0Bits		= heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits
		76  
		77  	// pallocChunksL2Bits is the number of bits of the chunk index number
		78  	// covered by the second level of the chunks map.
		79  	//
		80  	// See (*pageAlloc).chunks for more details. Update the documentation
		81  	// there should this change.
		82  	pallocChunksL2Bits	= heapAddrBits - logPallocChunkBytes - pallocChunksL1Bits
		83  	pallocChunksL1Shift = pallocChunksL2Bits
		84  )
		85  
		86  // Maximum searchAddr value, which indicates that the heap has no free space.
		87  //
		88  // We alias maxOffAddr just to make it clear that this is the maximum address
		89  // for the page allocator's search space. See maxOffAddr for details.
		90  var maxSearchAddr = maxOffAddr
		91  
		92  // Global chunk index.
		93  //
		94  // Represents an index into the leaf level of the radix tree.
		95  // Similar to arenaIndex, except instead of arenas, it divides the address
		96  // space into chunks.
		97  type chunkIdx uint
		98  
		99  // chunkIndex returns the global index of the palloc chunk containing the
	 100  // pointer p.
	 101  func chunkIndex(p uintptr) chunkIdx {
	 102  	return chunkIdx((p - arenaBaseOffset) / pallocChunkBytes)
	 103  }
	 104  
	 105  // chunkIndex returns the base address of the palloc chunk at index ci.
	 106  func chunkBase(ci chunkIdx) uintptr {
	 107  	return uintptr(ci)*pallocChunkBytes + arenaBaseOffset
	 108  }
	 109  
	 110  // chunkPageIndex computes the index of the page that contains p,
	 111  // relative to the chunk which contains p.
	 112  func chunkPageIndex(p uintptr) uint {
	 113  	return uint(p % pallocChunkBytes / pageSize)
	 114  }
	 115  
	 116  // l1 returns the index into the first level of (*pageAlloc).chunks.
	 117  func (i chunkIdx) l1() uint {
	 118  	if pallocChunksL1Bits == 0 {
	 119  		// Let the compiler optimize this away if there's no
	 120  		// L1 map.
	 121  		return 0
	 122  	} else {
	 123  		return uint(i) >> pallocChunksL1Shift
	 124  	}
	 125  }
	 126  
	 127  // l2 returns the index into the second level of (*pageAlloc).chunks.
	 128  func (i chunkIdx) l2() uint {
	 129  	if pallocChunksL1Bits == 0 {
	 130  		return uint(i)
	 131  	} else {
	 132  		return uint(i) & (1<<pallocChunksL2Bits - 1)
	 133  	}
	 134  }
	 135  
	 136  // offAddrToLevelIndex converts an address in the offset address space
	 137  // to the index into summary[level] containing addr.
	 138  func offAddrToLevelIndex(level int, addr offAddr) int {
	 139  	return int((addr.a - arenaBaseOffset) >> levelShift[level])
	 140  }
	 141  
	 142  // levelIndexToOffAddr converts an index into summary[level] into
	 143  // the corresponding address in the offset address space.
	 144  func levelIndexToOffAddr(level, idx int) offAddr {
	 145  	return offAddr{(uintptr(idx) << levelShift[level]) + arenaBaseOffset}
	 146  }
	 147  
	 148  // addrsToSummaryRange converts base and limit pointers into a range
	 149  // of entries for the given summary level.
	 150  //
	 151  // The returned range is inclusive on the lower bound and exclusive on
	 152  // the upper bound.
	 153  func addrsToSummaryRange(level int, base, limit uintptr) (lo int, hi int) {
	 154  	// This is slightly more nuanced than just a shift for the exclusive
	 155  	// upper-bound. Note that the exclusive upper bound may be within a
	 156  	// summary at this level, meaning if we just do the obvious computation
	 157  	// hi will end up being an inclusive upper bound. Unfortunately, just
	 158  	// adding 1 to that is too broad since we might be on the very edge of
	 159  	// of a summary's max page count boundary for this level
	 160  	// (1 << levelLogPages[level]). So, make limit an inclusive upper bound
	 161  	// then shift, then add 1, so we get an exclusive upper bound at the end.
	 162  	lo = int((base - arenaBaseOffset) >> levelShift[level])
	 163  	hi = int(((limit-1)-arenaBaseOffset)>>levelShift[level]) + 1
	 164  	return
	 165  }
	 166  
	 167  // blockAlignSummaryRange aligns indices into the given level to that
	 168  // level's block width (1 << levelBits[level]). It assumes lo is inclusive
	 169  // and hi is exclusive, and so aligns them down and up respectively.
	 170  func blockAlignSummaryRange(level int, lo, hi int) (int, int) {
	 171  	e := uintptr(1) << levelBits[level]
	 172  	return int(alignDown(uintptr(lo), e)), int(alignUp(uintptr(hi), e))
	 173  }
	 174  
	 175  type pageAlloc struct {
	 176  	// Radix tree of summaries.
	 177  	//
	 178  	// Each slice's cap represents the whole memory reservation.
	 179  	// Each slice's len reflects the allocator's maximum known
	 180  	// mapped heap address for that level.
	 181  	//
	 182  	// The backing store of each summary level is reserved in init
	 183  	// and may or may not be committed in grow (small address spaces
	 184  	// may commit all the memory in init).
	 185  	//
	 186  	// The purpose of keeping len <= cap is to enforce bounds checks
	 187  	// on the top end of the slice so that instead of an unknown
	 188  	// runtime segmentation fault, we get a much friendlier out-of-bounds
	 189  	// error.
	 190  	//
	 191  	// To iterate over a summary level, use inUse to determine which ranges
	 192  	// are currently available. Otherwise one might try to access
	 193  	// memory which is only Reserved which may result in a hard fault.
	 194  	//
	 195  	// We may still get segmentation faults < len since some of that
	 196  	// memory may not be committed yet.
	 197  	summary [summaryLevels][]pallocSum
	 198  
	 199  	// chunks is a slice of bitmap chunks.
	 200  	//
	 201  	// The total size of chunks is quite large on most 64-bit platforms
	 202  	// (O(GiB) or more) if flattened, so rather than making one large mapping
	 203  	// (which has problems on some platforms, even when PROT_NONE) we use a
	 204  	// two-level sparse array approach similar to the arena index in mheap.
	 205  	//
	 206  	// To find the chunk containing a memory address `a`, do:
	 207  	//	 chunkOf(chunkIndex(a))
	 208  	//
	 209  	// Below is a table describing the configuration for chunks for various
	 210  	// heapAddrBits supported by the runtime.
	 211  	//
	 212  	// heapAddrBits | L1 Bits | L2 Bits | L2 Entry Size
	 213  	// ------------------------------------------------
	 214  	// 32					 | 0			 | 10			| 128 KiB
	 215  	// 33 (iOS)		 | 0			 | 11			| 256 KiB
	 216  	// 48					 | 13			| 13			| 1 MiB
	 217  	//
	 218  	// There's no reason to use the L1 part of chunks on 32-bit, the
	 219  	// address space is small so the L2 is small. For platforms with a
	 220  	// 48-bit address space, we pick the L1 such that the L2 is 1 MiB
	 221  	// in size, which is a good balance between low granularity without
	 222  	// making the impact on BSS too high (note the L1 is stored directly
	 223  	// in pageAlloc).
	 224  	//
	 225  	// To iterate over the bitmap, use inUse to determine which ranges
	 226  	// are currently available. Otherwise one might iterate over unused
	 227  	// ranges.
	 228  	//
	 229  	// TODO(mknyszek): Consider changing the definition of the bitmap
	 230  	// such that 1 means free and 0 means in-use so that summaries and
	 231  	// the bitmaps align better on zero-values.
	 232  	chunks [1 << pallocChunksL1Bits]*[1 << pallocChunksL2Bits]pallocData
	 233  
	 234  	// The address to start an allocation search with. It must never
	 235  	// point to any memory that is not contained in inUse, i.e.
	 236  	// inUse.contains(searchAddr.addr()) must always be true. The one
	 237  	// exception to this rule is that it may take on the value of
	 238  	// maxOffAddr to indicate that the heap is exhausted.
	 239  	//
	 240  	// We guarantee that all valid heap addresses below this value
	 241  	// are allocated and not worth searching.
	 242  	searchAddr offAddr
	 243  
	 244  	// start and end represent the chunk indices
	 245  	// which pageAlloc knows about. It assumes
	 246  	// chunks in the range [start, end) are
	 247  	// currently ready to use.
	 248  	start, end chunkIdx
	 249  
	 250  	// inUse is a slice of ranges of address space which are
	 251  	// known by the page allocator to be currently in-use (passed
	 252  	// to grow).
	 253  	//
	 254  	// This field is currently unused on 32-bit architectures but
	 255  	// is harmless to track. We care much more about having a
	 256  	// contiguous heap in these cases and take additional measures
	 257  	// to ensure that, so in nearly all cases this should have just
	 258  	// 1 element.
	 259  	//
	 260  	// All access is protected by the mheapLock.
	 261  	inUse addrRanges
	 262  
	 263  	// scav stores the scavenger state.
	 264  	//
	 265  	// All fields are protected by mheapLock.
	 266  	scav struct {
	 267  		// inUse is a slice of ranges of address space which have not
	 268  		// yet been looked at by the scavenger.
	 269  		inUse addrRanges
	 270  
	 271  		// gen is the scavenge generation number.
	 272  		gen uint32
	 273  
	 274  		// reservationBytes is how large of a reservation should be made
	 275  		// in bytes of address space for each scavenge iteration.
	 276  		reservationBytes uintptr
	 277  
	 278  		// released is the amount of memory released this generation.
	 279  		released uintptr
	 280  
	 281  		// scavLWM is the lowest (offset) address that the scavenger reached this
	 282  		// scavenge generation.
	 283  		scavLWM offAddr
	 284  
	 285  		// freeHWM is the highest (offset) address of a page that was freed to
	 286  		// the page allocator this scavenge generation.
	 287  		freeHWM offAddr
	 288  	}
	 289  
	 290  	// mheap_.lock. This level of indirection makes it possible
	 291  	// to test pageAlloc indepedently of the runtime allocator.
	 292  	mheapLock *mutex
	 293  
	 294  	// sysStat is the runtime memstat to update when new system
	 295  	// memory is committed by the pageAlloc for allocation metadata.
	 296  	sysStat *sysMemStat
	 297  
	 298  	// Whether or not this struct is being used in tests.
	 299  	test bool
	 300  }
	 301  
	 302  func (p *pageAlloc) init(mheapLock *mutex, sysStat *sysMemStat) {
	 303  	if levelLogPages[0] > logMaxPackedValue {
	 304  		// We can't represent 1<<levelLogPages[0] pages, the maximum number
	 305  		// of pages we need to represent at the root level, in a summary, which
	 306  		// is a big problem. Throw.
	 307  		print("runtime: root level max pages = ", 1<<levelLogPages[0], "\n")
	 308  		print("runtime: summary max pages = ", maxPackedValue, "\n")
	 309  		throw("root level max pages doesn't fit in summary")
	 310  	}
	 311  	p.sysStat = sysStat
	 312  
	 313  	// Initialize p.inUse.
	 314  	p.inUse.init(sysStat)
	 315  
	 316  	// System-dependent initialization.
	 317  	p.sysInit()
	 318  
	 319  	// Start with the searchAddr in a state indicating there's no free memory.
	 320  	p.searchAddr = maxSearchAddr
	 321  
	 322  	// Set the mheapLock.
	 323  	p.mheapLock = mheapLock
	 324  
	 325  	// Initialize scavenge tracking state.
	 326  	p.scav.scavLWM = maxSearchAddr
	 327  }
	 328  
	 329  // tryChunkOf returns the bitmap data for the given chunk.
	 330  //
	 331  // Returns nil if the chunk data has not been mapped.
	 332  func (p *pageAlloc) tryChunkOf(ci chunkIdx) *pallocData {
	 333  	l2 := p.chunks[ci.l1()]
	 334  	if l2 == nil {
	 335  		return nil
	 336  	}
	 337  	return &l2[ci.l2()]
	 338  }
	 339  
	 340  // chunkOf returns the chunk at the given chunk index.
	 341  //
	 342  // The chunk index must be valid or this method may throw.
	 343  func (p *pageAlloc) chunkOf(ci chunkIdx) *pallocData {
	 344  	return &p.chunks[ci.l1()][ci.l2()]
	 345  }
	 346  
	 347  // grow sets up the metadata for the address range [base, base+size).
	 348  // It may allocate metadata, in which case *p.sysStat will be updated.
	 349  //
	 350  // p.mheapLock must be held.
	 351  func (p *pageAlloc) grow(base, size uintptr) {
	 352  	assertLockHeld(p.mheapLock)
	 353  
	 354  	// Round up to chunks, since we can't deal with increments smaller
	 355  	// than chunks. Also, sysGrow expects aligned values.
	 356  	limit := alignUp(base+size, pallocChunkBytes)
	 357  	base = alignDown(base, pallocChunkBytes)
	 358  
	 359  	// Grow the summary levels in a system-dependent manner.
	 360  	// We just update a bunch of additional metadata here.
	 361  	p.sysGrow(base, limit)
	 362  
	 363  	// Update p.start and p.end.
	 364  	// If no growth happened yet, start == 0. This is generally
	 365  	// safe since the zero page is unmapped.
	 366  	firstGrowth := p.start == 0
	 367  	start, end := chunkIndex(base), chunkIndex(limit)
	 368  	if firstGrowth || start < p.start {
	 369  		p.start = start
	 370  	}
	 371  	if end > p.end {
	 372  		p.end = end
	 373  	}
	 374  	// Note that [base, limit) will never overlap with any existing
	 375  	// range inUse because grow only ever adds never-used memory
	 376  	// regions to the page allocator.
	 377  	p.inUse.add(makeAddrRange(base, limit))
	 378  
	 379  	// A grow operation is a lot like a free operation, so if our
	 380  	// chunk ends up below p.searchAddr, update p.searchAddr to the
	 381  	// new address, just like in free.
	 382  	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
	 383  		p.searchAddr = b
	 384  	}
	 385  
	 386  	// Add entries into chunks, which is sparse, if needed. Then,
	 387  	// initialize the bitmap.
	 388  	//
	 389  	// Newly-grown memory is always considered scavenged.
	 390  	// Set all the bits in the scavenged bitmaps high.
	 391  	for c := chunkIndex(base); c < chunkIndex(limit); c++ {
	 392  		if p.chunks[c.l1()] == nil {
	 393  			// Create the necessary l2 entry.
	 394  			//
	 395  			// Store it atomically to avoid races with readers which
	 396  			// don't acquire the heap lock.
	 397  			r := sysAlloc(unsafe.Sizeof(*p.chunks[0]), p.sysStat)
	 398  			if r == nil {
	 399  				throw("pageAlloc: out of memory")
	 400  			}
	 401  			atomic.StorepNoWB(unsafe.Pointer(&p.chunks[c.l1()]), r)
	 402  		}
	 403  		p.chunkOf(c).scavenged.setRange(0, pallocChunkPages)
	 404  	}
	 405  
	 406  	// Update summaries accordingly. The grow acts like a free, so
	 407  	// we need to ensure this newly-free memory is visible in the
	 408  	// summaries.
	 409  	p.update(base, size/pageSize, true, false)
	 410  }
	 411  
	 412  // update updates heap metadata. It must be called each time the bitmap
	 413  // is updated.
	 414  //
	 415  // If contig is true, update does some optimizations assuming that there was
	 416  // a contiguous allocation or free between addr and addr+npages. alloc indicates
	 417  // whether the operation performed was an allocation or a free.
	 418  //
	 419  // p.mheapLock must be held.
	 420  func (p *pageAlloc) update(base, npages uintptr, contig, alloc bool) {
	 421  	assertLockHeld(p.mheapLock)
	 422  
	 423  	// base, limit, start, and end are inclusive.
	 424  	limit := base + npages*pageSize - 1
	 425  	sc, ec := chunkIndex(base), chunkIndex(limit)
	 426  
	 427  	// Handle updating the lowest level first.
	 428  	if sc == ec {
	 429  		// Fast path: the allocation doesn't span more than one chunk,
	 430  		// so update this one and if the summary didn't change, return.
	 431  		x := p.summary[len(p.summary)-1][sc]
	 432  		y := p.chunkOf(sc).summarize()
	 433  		if x == y {
	 434  			return
	 435  		}
	 436  		p.summary[len(p.summary)-1][sc] = y
	 437  	} else if contig {
	 438  		// Slow contiguous path: the allocation spans more than one chunk
	 439  		// and at least one summary is guaranteed to change.
	 440  		summary := p.summary[len(p.summary)-1]
	 441  
	 442  		// Update the summary for chunk sc.
	 443  		summary[sc] = p.chunkOf(sc).summarize()
	 444  
	 445  		// Update the summaries for chunks in between, which are
	 446  		// either totally allocated or freed.
	 447  		whole := p.summary[len(p.summary)-1][sc+1 : ec]
	 448  		if alloc {
	 449  			// Should optimize into a memclr.
	 450  			for i := range whole {
	 451  				whole[i] = 0
	 452  			}
	 453  		} else {
	 454  			for i := range whole {
	 455  				whole[i] = freeChunkSum
	 456  			}
	 457  		}
	 458  
	 459  		// Update the summary for chunk ec.
	 460  		summary[ec] = p.chunkOf(ec).summarize()
	 461  	} else {
	 462  		// Slow general path: the allocation spans more than one chunk
	 463  		// and at least one summary is guaranteed to change.
	 464  		//
	 465  		// We can't assume a contiguous allocation happened, so walk over
	 466  		// every chunk in the range and manually recompute the summary.
	 467  		summary := p.summary[len(p.summary)-1]
	 468  		for c := sc; c <= ec; c++ {
	 469  			summary[c] = p.chunkOf(c).summarize()
	 470  		}
	 471  	}
	 472  
	 473  	// Walk up the radix tree and update the summaries appropriately.
	 474  	changed := true
	 475  	for l := len(p.summary) - 2; l >= 0 && changed; l-- {
	 476  		// Update summaries at level l from summaries at level l+1.
	 477  		changed = false
	 478  
	 479  		// "Constants" for the previous level which we
	 480  		// need to compute the summary from that level.
	 481  		logEntriesPerBlock := levelBits[l+1]
	 482  		logMaxPages := levelLogPages[l+1]
	 483  
	 484  		// lo and hi describe all the parts of the level we need to look at.
	 485  		lo, hi := addrsToSummaryRange(l, base, limit+1)
	 486  
	 487  		// Iterate over each block, updating the corresponding summary in the less-granular level.
	 488  		for i := lo; i < hi; i++ {
	 489  			children := p.summary[l+1][i<<logEntriesPerBlock : (i+1)<<logEntriesPerBlock]
	 490  			sum := mergeSummaries(children, logMaxPages)
	 491  			old := p.summary[l][i]
	 492  			if old != sum {
	 493  				changed = true
	 494  				p.summary[l][i] = sum
	 495  			}
	 496  		}
	 497  	}
	 498  }
	 499  
	 500  // allocRange marks the range of memory [base, base+npages*pageSize) as
	 501  // allocated. It also updates the summaries to reflect the newly-updated
	 502  // bitmap.
	 503  //
	 504  // Returns the amount of scavenged memory in bytes present in the
	 505  // allocated range.
	 506  //
	 507  // p.mheapLock must be held.
	 508  func (p *pageAlloc) allocRange(base, npages uintptr) uintptr {
	 509  	assertLockHeld(p.mheapLock)
	 510  
	 511  	limit := base + npages*pageSize - 1
	 512  	sc, ec := chunkIndex(base), chunkIndex(limit)
	 513  	si, ei := chunkPageIndex(base), chunkPageIndex(limit)
	 514  
	 515  	scav := uint(0)
	 516  	if sc == ec {
	 517  		// The range doesn't cross any chunk boundaries.
	 518  		chunk := p.chunkOf(sc)
	 519  		scav += chunk.scavenged.popcntRange(si, ei+1-si)
	 520  		chunk.allocRange(si, ei+1-si)
	 521  	} else {
	 522  		// The range crosses at least one chunk boundary.
	 523  		chunk := p.chunkOf(sc)
	 524  		scav += chunk.scavenged.popcntRange(si, pallocChunkPages-si)
	 525  		chunk.allocRange(si, pallocChunkPages-si)
	 526  		for c := sc + 1; c < ec; c++ {
	 527  			chunk := p.chunkOf(c)
	 528  			scav += chunk.scavenged.popcntRange(0, pallocChunkPages)
	 529  			chunk.allocAll()
	 530  		}
	 531  		chunk = p.chunkOf(ec)
	 532  		scav += chunk.scavenged.popcntRange(0, ei+1)
	 533  		chunk.allocRange(0, ei+1)
	 534  	}
	 535  	p.update(base, npages, true, true)
	 536  	return uintptr(scav) * pageSize
	 537  }
	 538  
	 539  // findMappedAddr returns the smallest mapped offAddr that is
	 540  // >= addr. That is, if addr refers to mapped memory, then it is
	 541  // returned. If addr is higher than any mapped region, then
	 542  // it returns maxOffAddr.
	 543  //
	 544  // p.mheapLock must be held.
	 545  func (p *pageAlloc) findMappedAddr(addr offAddr) offAddr {
	 546  	assertLockHeld(p.mheapLock)
	 547  
	 548  	// If we're not in a test, validate first by checking mheap_.arenas.
	 549  	// This is a fast path which is only safe to use outside of testing.
	 550  	ai := arenaIndex(addr.addr())
	 551  	if p.test || mheap_.arenas[ai.l1()] == nil || mheap_.arenas[ai.l1()][ai.l2()] == nil {
	 552  		vAddr, ok := p.inUse.findAddrGreaterEqual(addr.addr())
	 553  		if ok {
	 554  			return offAddr{vAddr}
	 555  		} else {
	 556  			// The candidate search address is greater than any
	 557  			// known address, which means we definitely have no
	 558  			// free memory left.
	 559  			return maxOffAddr
	 560  		}
	 561  	}
	 562  	return addr
	 563  }
	 564  
	 565  // find searches for the first (address-ordered) contiguous free region of
	 566  // npages in size and returns a base address for that region.
	 567  //
	 568  // It uses p.searchAddr to prune its search and assumes that no palloc chunks
	 569  // below chunkIndex(p.searchAddr) contain any free memory at all.
	 570  //
	 571  // find also computes and returns a candidate p.searchAddr, which may or
	 572  // may not prune more of the address space than p.searchAddr already does.
	 573  // This candidate is always a valid p.searchAddr.
	 574  //
	 575  // find represents the slow path and the full radix tree search.
	 576  //
	 577  // Returns a base address of 0 on failure, in which case the candidate
	 578  // searchAddr returned is invalid and must be ignored.
	 579  //
	 580  // p.mheapLock must be held.
	 581  func (p *pageAlloc) find(npages uintptr) (uintptr, offAddr) {
	 582  	assertLockHeld(p.mheapLock)
	 583  
	 584  	// Search algorithm.
	 585  	//
	 586  	// This algorithm walks each level l of the radix tree from the root level
	 587  	// to the leaf level. It iterates over at most 1 << levelBits[l] of entries
	 588  	// in a given level in the radix tree, and uses the summary information to
	 589  	// find either:
	 590  	//	1) That a given subtree contains a large enough contiguous region, at
	 591  	//		 which point it continues iterating on the next level, or
	 592  	//	2) That there are enough contiguous boundary-crossing bits to satisfy
	 593  	//		 the allocation, at which point it knows exactly where to start
	 594  	//		 allocating from.
	 595  	//
	 596  	// i tracks the index into the current level l's structure for the
	 597  	// contiguous 1 << levelBits[l] entries we're actually interested in.
	 598  	//
	 599  	// NOTE: Technically this search could allocate a region which crosses
	 600  	// the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is
	 601  	// a discontinuity. However, the only way this could happen is if the
	 602  	// page at the zero address is mapped, and this is impossible on
	 603  	// every system we support where arenaBaseOffset != 0. So, the
	 604  	// discontinuity is already encoded in the fact that the OS will never
	 605  	// map the zero page for us, and this function doesn't try to handle
	 606  	// this case in any way.
	 607  
	 608  	// i is the beginning of the block of entries we're searching at the
	 609  	// current level.
	 610  	i := 0
	 611  
	 612  	// firstFree is the region of address space that we are certain to
	 613  	// find the first free page in the heap. base and bound are the inclusive
	 614  	// bounds of this window, and both are addresses in the linearized, contiguous
	 615  	// view of the address space (with arenaBaseOffset pre-added). At each level,
	 616  	// this window is narrowed as we find the memory region containing the
	 617  	// first free page of memory. To begin with, the range reflects the
	 618  	// full process address space.
	 619  	//
	 620  	// firstFree is updated by calling foundFree each time free space in the
	 621  	// heap is discovered.
	 622  	//
	 623  	// At the end of the search, base.addr() is the best new
	 624  	// searchAddr we could deduce in this search.
	 625  	firstFree := struct {
	 626  		base, bound offAddr
	 627  	}{
	 628  		base:	minOffAddr,
	 629  		bound: maxOffAddr,
	 630  	}
	 631  	// foundFree takes the given address range [addr, addr+size) and
	 632  	// updates firstFree if it is a narrower range. The input range must
	 633  	// either be fully contained within firstFree or not overlap with it
	 634  	// at all.
	 635  	//
	 636  	// This way, we'll record the first summary we find with any free
	 637  	// pages on the root level and narrow that down if we descend into
	 638  	// that summary. But as soon as we need to iterate beyond that summary
	 639  	// in a level to find a large enough range, we'll stop narrowing.
	 640  	foundFree := func(addr offAddr, size uintptr) {
	 641  		if firstFree.base.lessEqual(addr) && addr.add(size-1).lessEqual(firstFree.bound) {
	 642  			// This range fits within the current firstFree window, so narrow
	 643  			// down the firstFree window to the base and bound of this range.
	 644  			firstFree.base = addr
	 645  			firstFree.bound = addr.add(size - 1)
	 646  		} else if !(addr.add(size-1).lessThan(firstFree.base) || firstFree.bound.lessThan(addr)) {
	 647  			// This range only partially overlaps with the firstFree range,
	 648  			// so throw.
	 649  			print("runtime: addr = ", hex(addr.addr()), ", size = ", size, "\n")
	 650  			print("runtime: base = ", hex(firstFree.base.addr()), ", bound = ", hex(firstFree.bound.addr()), "\n")
	 651  			throw("range partially overlaps")
	 652  		}
	 653  	}
	 654  
	 655  	// lastSum is the summary which we saw on the previous level that made us
	 656  	// move on to the next level. Used to print additional information in the
	 657  	// case of a catastrophic failure.
	 658  	// lastSumIdx is that summary's index in the previous level.
	 659  	lastSum := packPallocSum(0, 0, 0)
	 660  	lastSumIdx := -1
	 661  
	 662  nextLevel:
	 663  	for l := 0; l < len(p.summary); l++ {
	 664  		// For the root level, entriesPerBlock is the whole level.
	 665  		entriesPerBlock := 1 << levelBits[l]
	 666  		logMaxPages := levelLogPages[l]
	 667  
	 668  		// We've moved into a new level, so let's update i to our new
	 669  		// starting index. This is a no-op for level 0.
	 670  		i <<= levelBits[l]
	 671  
	 672  		// Slice out the block of entries we care about.
	 673  		entries := p.summary[l][i : i+entriesPerBlock]
	 674  
	 675  		// Determine j0, the first index we should start iterating from.
	 676  		// The searchAddr may help us eliminate iterations if we followed the
	 677  		// searchAddr on the previous level or we're on the root leve, in which
	 678  		// case the searchAddr should be the same as i after levelShift.
	 679  		j0 := 0
	 680  		if searchIdx := offAddrToLevelIndex(l, p.searchAddr); searchIdx&^(entriesPerBlock-1) == i {
	 681  			j0 = searchIdx & (entriesPerBlock - 1)
	 682  		}
	 683  
	 684  		// Run over the level entries looking for
	 685  		// a contiguous run of at least npages either
	 686  		// within an entry or across entries.
	 687  		//
	 688  		// base contains the page index (relative to
	 689  		// the first entry's first page) of the currently
	 690  		// considered run of consecutive pages.
	 691  		//
	 692  		// size contains the size of the currently considered
	 693  		// run of consecutive pages.
	 694  		var base, size uint
	 695  		for j := j0; j < len(entries); j++ {
	 696  			sum := entries[j]
	 697  			if sum == 0 {
	 698  				// A full entry means we broke any streak and
	 699  				// that we should skip it altogether.
	 700  				size = 0
	 701  				continue
	 702  			}
	 703  
	 704  			// We've encountered a non-zero summary which means
	 705  			// free memory, so update firstFree.
	 706  			foundFree(levelIndexToOffAddr(l, i+j), (uintptr(1)<<logMaxPages)*pageSize)
	 707  
	 708  			s := sum.start()
	 709  			if size+s >= uint(npages) {
	 710  				// If size == 0 we don't have a run yet,
	 711  				// which means base isn't valid. So, set
	 712  				// base to the first page in this block.
	 713  				if size == 0 {
	 714  					base = uint(j) << logMaxPages
	 715  				}
	 716  				// We hit npages; we're done!
	 717  				size += s
	 718  				break
	 719  			}
	 720  			if sum.max() >= uint(npages) {
	 721  				// The entry itself contains npages contiguous
	 722  				// free pages, so continue on the next level
	 723  				// to find that run.
	 724  				i += j
	 725  				lastSumIdx = i
	 726  				lastSum = sum
	 727  				continue nextLevel
	 728  			}
	 729  			if size == 0 || s < 1<<logMaxPages {
	 730  				// We either don't have a current run started, or this entry
	 731  				// isn't totally free (meaning we can't continue the current
	 732  				// one), so try to begin a new run by setting size and base
	 733  				// based on sum.end.
	 734  				size = sum.end()
	 735  				base = uint(j+1)<<logMaxPages - size
	 736  				continue
	 737  			}
	 738  			// The entry is completely free, so continue the run.
	 739  			size += 1 << logMaxPages
	 740  		}
	 741  		if size >= uint(npages) {
	 742  			// We found a sufficiently large run of free pages straddling
	 743  			// some boundary, so compute the address and return it.
	 744  			addr := levelIndexToOffAddr(l, i).add(uintptr(base) * pageSize).addr()
	 745  			return addr, p.findMappedAddr(firstFree.base)
	 746  		}
	 747  		if l == 0 {
	 748  			// We're at level zero, so that means we've exhausted our search.
	 749  			return 0, maxSearchAddr
	 750  		}
	 751  
	 752  		// We're not at level zero, and we exhausted the level we were looking in.
	 753  		// This means that either our calculations were wrong or the level above
	 754  		// lied to us. In either case, dump some useful state and throw.
	 755  		print("runtime: summary[", l-1, "][", lastSumIdx, "] = ", lastSum.start(), ", ", lastSum.max(), ", ", lastSum.end(), "\n")
	 756  		print("runtime: level = ", l, ", npages = ", npages, ", j0 = ", j0, "\n")
	 757  		print("runtime: p.searchAddr = ", hex(p.searchAddr.addr()), ", i = ", i, "\n")
	 758  		print("runtime: levelShift[level] = ", levelShift[l], ", levelBits[level] = ", levelBits[l], "\n")
	 759  		for j := 0; j < len(entries); j++ {
	 760  			sum := entries[j]
	 761  			print("runtime: summary[", l, "][", i+j, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
	 762  		}
	 763  		throw("bad summary data")
	 764  	}
	 765  
	 766  	// Since we've gotten to this point, that means we haven't found a
	 767  	// sufficiently-sized free region straddling some boundary (chunk or larger).
	 768  	// This means the last summary we inspected must have had a large enough "max"
	 769  	// value, so look inside the chunk to find a suitable run.
	 770  	//
	 771  	// After iterating over all levels, i must contain a chunk index which
	 772  	// is what the final level represents.
	 773  	ci := chunkIdx(i)
	 774  	j, searchIdx := p.chunkOf(ci).find(npages, 0)
	 775  	if j == ^uint(0) {
	 776  		// We couldn't find any space in this chunk despite the summaries telling
	 777  		// us it should be there. There's likely a bug, so dump some state and throw.
	 778  		sum := p.summary[len(p.summary)-1][i]
	 779  		print("runtime: summary[", len(p.summary)-1, "][", i, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
	 780  		print("runtime: npages = ", npages, "\n")
	 781  		throw("bad summary data")
	 782  	}
	 783  
	 784  	// Compute the address at which the free space starts.
	 785  	addr := chunkBase(ci) + uintptr(j)*pageSize
	 786  
	 787  	// Since we actually searched the chunk, we may have
	 788  	// found an even narrower free window.
	 789  	searchAddr := chunkBase(ci) + uintptr(searchIdx)*pageSize
	 790  	foundFree(offAddr{searchAddr}, chunkBase(ci+1)-searchAddr)
	 791  	return addr, p.findMappedAddr(firstFree.base)
	 792  }
	 793  
	 794  // alloc allocates npages worth of memory from the page heap, returning the base
	 795  // address for the allocation and the amount of scavenged memory in bytes
	 796  // contained in the region [base address, base address + npages*pageSize).
	 797  //
	 798  // Returns a 0 base address on failure, in which case other returned values
	 799  // should be ignored.
	 800  //
	 801  // p.mheapLock must be held.
	 802  //
	 803  // Must run on the system stack because p.mheapLock must be held.
	 804  //
	 805  //go:systemstack
	 806  func (p *pageAlloc) alloc(npages uintptr) (addr uintptr, scav uintptr) {
	 807  	assertLockHeld(p.mheapLock)
	 808  
	 809  	// If the searchAddr refers to a region which has a higher address than
	 810  	// any known chunk, then we know we're out of memory.
	 811  	if chunkIndex(p.searchAddr.addr()) >= p.end {
	 812  		return 0, 0
	 813  	}
	 814  
	 815  	// If npages has a chance of fitting in the chunk where the searchAddr is,
	 816  	// search it directly.
	 817  	searchAddr := minOffAddr
	 818  	if pallocChunkPages-chunkPageIndex(p.searchAddr.addr()) >= uint(npages) {
	 819  		// npages is guaranteed to be no greater than pallocChunkPages here.
	 820  		i := chunkIndex(p.searchAddr.addr())
	 821  		if max := p.summary[len(p.summary)-1][i].max(); max >= uint(npages) {
	 822  			j, searchIdx := p.chunkOf(i).find(npages, chunkPageIndex(p.searchAddr.addr()))
	 823  			if j == ^uint(0) {
	 824  				print("runtime: max = ", max, ", npages = ", npages, "\n")
	 825  				print("runtime: searchIdx = ", chunkPageIndex(p.searchAddr.addr()), ", p.searchAddr = ", hex(p.searchAddr.addr()), "\n")
	 826  				throw("bad summary data")
	 827  			}
	 828  			addr = chunkBase(i) + uintptr(j)*pageSize
	 829  			searchAddr = offAddr{chunkBase(i) + uintptr(searchIdx)*pageSize}
	 830  			goto Found
	 831  		}
	 832  	}
	 833  	// We failed to use a searchAddr for one reason or another, so try
	 834  	// the slow path.
	 835  	addr, searchAddr = p.find(npages)
	 836  	if addr == 0 {
	 837  		if npages == 1 {
	 838  			// We failed to find a single free page, the smallest unit
	 839  			// of allocation. This means we know the heap is completely
	 840  			// exhausted. Otherwise, the heap still might have free
	 841  			// space in it, just not enough contiguous space to
	 842  			// accommodate npages.
	 843  			p.searchAddr = maxSearchAddr
	 844  		}
	 845  		return 0, 0
	 846  	}
	 847  Found:
	 848  	// Go ahead and actually mark the bits now that we have an address.
	 849  	scav = p.allocRange(addr, npages)
	 850  
	 851  	// If we found a higher searchAddr, we know that all the
	 852  	// heap memory before that searchAddr in an offset address space is
	 853  	// allocated, so bump p.searchAddr up to the new one.
	 854  	if p.searchAddr.lessThan(searchAddr) {
	 855  		p.searchAddr = searchAddr
	 856  	}
	 857  	return addr, scav
	 858  }
	 859  
	 860  // free returns npages worth of memory starting at base back to the page heap.
	 861  //
	 862  // p.mheapLock must be held.
	 863  //
	 864  // Must run on the system stack because p.mheapLock must be held.
	 865  //
	 866  //go:systemstack
	 867  func (p *pageAlloc) free(base, npages uintptr) {
	 868  	assertLockHeld(p.mheapLock)
	 869  
	 870  	// If we're freeing pages below the p.searchAddr, update searchAddr.
	 871  	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
	 872  		p.searchAddr = b
	 873  	}
	 874  	// Update the free high watermark for the scavenger.
	 875  	limit := base + npages*pageSize - 1
	 876  	if offLimit := (offAddr{limit}); p.scav.freeHWM.lessThan(offLimit) {
	 877  		p.scav.freeHWM = offLimit
	 878  	}
	 879  	if npages == 1 {
	 880  		// Fast path: we're clearing a single bit, and we know exactly
	 881  		// where it is, so mark it directly.
	 882  		i := chunkIndex(base)
	 883  		p.chunkOf(i).free1(chunkPageIndex(base))
	 884  	} else {
	 885  		// Slow path: we're clearing more bits so we may need to iterate.
	 886  		sc, ec := chunkIndex(base), chunkIndex(limit)
	 887  		si, ei := chunkPageIndex(base), chunkPageIndex(limit)
	 888  
	 889  		if sc == ec {
	 890  			// The range doesn't cross any chunk boundaries.
	 891  			p.chunkOf(sc).free(si, ei+1-si)
	 892  		} else {
	 893  			// The range crosses at least one chunk boundary.
	 894  			p.chunkOf(sc).free(si, pallocChunkPages-si)
	 895  			for c := sc + 1; c < ec; c++ {
	 896  				p.chunkOf(c).freeAll()
	 897  			}
	 898  			p.chunkOf(ec).free(0, ei+1)
	 899  		}
	 900  	}
	 901  	p.update(base, npages, true, false)
	 902  }
	 903  
	 904  const (
	 905  	pallocSumBytes = unsafe.Sizeof(pallocSum(0))
	 906  
	 907  	// maxPackedValue is the maximum value that any of the three fields in
	 908  	// the pallocSum may take on.
	 909  	maxPackedValue		= 1 << logMaxPackedValue
	 910  	logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits
	 911  
	 912  	freeChunkSum = pallocSum(uint64(pallocChunkPages) |
	 913  		uint64(pallocChunkPages<<logMaxPackedValue) |
	 914  		uint64(pallocChunkPages<<(2*logMaxPackedValue)))
	 915  )
	 916  
	 917  // pallocSum is a packed summary type which packs three numbers: start, max,
	 918  // and end into a single 8-byte value. Each of these values are a summary of
	 919  // a bitmap and are thus counts, each of which may have a maximum value of
	 920  // 2^21 - 1, or all three may be equal to 2^21. The latter case is represented
	 921  // by just setting the 64th bit.
	 922  type pallocSum uint64
	 923  
	 924  // packPallocSum takes a start, max, and end value and produces a pallocSum.
	 925  func packPallocSum(start, max, end uint) pallocSum {
	 926  	if max == maxPackedValue {
	 927  		return pallocSum(uint64(1 << 63))
	 928  	}
	 929  	return pallocSum((uint64(start) & (maxPackedValue - 1)) |
	 930  		((uint64(max) & (maxPackedValue - 1)) << logMaxPackedValue) |
	 931  		((uint64(end) & (maxPackedValue - 1)) << (2 * logMaxPackedValue)))
	 932  }
	 933  
	 934  // start extracts the start value from a packed sum.
	 935  func (p pallocSum) start() uint {
	 936  	if uint64(p)&uint64(1<<63) != 0 {
	 937  		return maxPackedValue
	 938  	}
	 939  	return uint(uint64(p) & (maxPackedValue - 1))
	 940  }
	 941  
	 942  // max extracts the max value from a packed sum.
	 943  func (p pallocSum) max() uint {
	 944  	if uint64(p)&uint64(1<<63) != 0 {
	 945  		return maxPackedValue
	 946  	}
	 947  	return uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1))
	 948  }
	 949  
	 950  // end extracts the end value from a packed sum.
	 951  func (p pallocSum) end() uint {
	 952  	if uint64(p)&uint64(1<<63) != 0 {
	 953  		return maxPackedValue
	 954  	}
	 955  	return uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
	 956  }
	 957  
	 958  // unpack unpacks all three values from the summary.
	 959  func (p pallocSum) unpack() (uint, uint, uint) {
	 960  	if uint64(p)&uint64(1<<63) != 0 {
	 961  		return maxPackedValue, maxPackedValue, maxPackedValue
	 962  	}
	 963  	return uint(uint64(p) & (maxPackedValue - 1)),
	 964  		uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)),
	 965  		uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
	 966  }
	 967  
	 968  // mergeSummaries merges consecutive summaries which may each represent at
	 969  // most 1 << logMaxPagesPerSum pages each together into one.
	 970  func mergeSummaries(sums []pallocSum, logMaxPagesPerSum uint) pallocSum {
	 971  	// Merge the summaries in sums into one.
	 972  	//
	 973  	// We do this by keeping a running summary representing the merged
	 974  	// summaries of sums[:i] in start, max, and end.
	 975  	start, max, end := sums[0].unpack()
	 976  	for i := 1; i < len(sums); i++ {
	 977  		// Merge in sums[i].
	 978  		si, mi, ei := sums[i].unpack()
	 979  
	 980  		// Merge in sums[i].start only if the running summary is
	 981  		// completely free, otherwise this summary's start
	 982  		// plays no role in the combined sum.
	 983  		if start == uint(i)<<logMaxPagesPerSum {
	 984  			start += si
	 985  		}
	 986  
	 987  		// Recompute the max value of the running sum by looking
	 988  		// across the boundary between the running sum and sums[i]
	 989  		// and at the max sums[i], taking the greatest of those two
	 990  		// and the max of the running sum.
	 991  		if end+si > max {
	 992  			max = end + si
	 993  		}
	 994  		if mi > max {
	 995  			max = mi
	 996  		}
	 997  
	 998  		// Merge in end by checking if this new summary is totally
	 999  		// free. If it is, then we want to extend the running sum's
	1000  		// end by the new summary. If not, then we have some alloc'd
	1001  		// pages in there and we just want to take the end value in
	1002  		// sums[i].
	1003  		if ei == 1<<logMaxPagesPerSum {
	1004  			end += 1 << logMaxPagesPerSum
	1005  		} else {
	1006  			end = ei
	1007  		}
	1008  	}
	1009  	return packPallocSum(start, max, end)
	1010  }
	1011  

View as plain text