...

Source file src/runtime/preempt.go

Documentation: runtime

		 1  // Copyright 2019 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // Goroutine preemption
		 6  //
		 7  // A goroutine can be preempted at any safe-point. Currently, there
		 8  // are a few categories of safe-points:
		 9  //
		10  // 1. A blocked safe-point occurs for the duration that a goroutine is
		11  //		descheduled, blocked on synchronization, or in a system call.
		12  //
		13  // 2. Synchronous safe-points occur when a running goroutine checks
		14  //		for a preemption request.
		15  //
		16  // 3. Asynchronous safe-points occur at any instruction in user code
		17  //		where the goroutine can be safely paused and a conservative
		18  //		stack and register scan can find stack roots. The runtime can
		19  //		stop a goroutine at an async safe-point using a signal.
		20  //
		21  // At both blocked and synchronous safe-points, a goroutine's CPU
		22  // state is minimal and the garbage collector has complete information
		23  // about its entire stack. This makes it possible to deschedule a
		24  // goroutine with minimal space, and to precisely scan a goroutine's
		25  // stack.
		26  //
		27  // Synchronous safe-points are implemented by overloading the stack
		28  // bound check in function prologues. To preempt a goroutine at the
		29  // next synchronous safe-point, the runtime poisons the goroutine's
		30  // stack bound to a value that will cause the next stack bound check
		31  // to fail and enter the stack growth implementation, which will
		32  // detect that it was actually a preemption and redirect to preemption
		33  // handling.
		34  //
		35  // Preemption at asynchronous safe-points is implemented by suspending
		36  // the thread using an OS mechanism (e.g., signals) and inspecting its
		37  // state to determine if the goroutine was at an asynchronous
		38  // safe-point. Since the thread suspension itself is generally
		39  // asynchronous, it also checks if the running goroutine wants to be
		40  // preempted, since this could have changed. If all conditions are
		41  // satisfied, it adjusts the signal context to make it look like the
		42  // signaled thread just called asyncPreempt and resumes the thread.
		43  // asyncPreempt spills all registers and enters the scheduler.
		44  //
		45  // (An alternative would be to preempt in the signal handler itself.
		46  // This would let the OS save and restore the register state and the
		47  // runtime would only need to know how to extract potentially
		48  // pointer-containing registers from the signal context. However, this
		49  // would consume an M for every preempted G, and the scheduler itself
		50  // is not designed to run from a signal handler, as it tends to
		51  // allocate memory and start threads in the preemption path.)
		52  
		53  package runtime
		54  
		55  import (
		56  	"runtime/internal/atomic"
		57  	"runtime/internal/sys"
		58  	"unsafe"
		59  )
		60  
		61  type suspendGState struct {
		62  	g *g
		63  
		64  	// dead indicates the goroutine was not suspended because it
		65  	// is dead. This goroutine could be reused after the dead
		66  	// state was observed, so the caller must not assume that it
		67  	// remains dead.
		68  	dead bool
		69  
		70  	// stopped indicates that this suspendG transitioned the G to
		71  	// _Gwaiting via g.preemptStop and thus is responsible for
		72  	// readying it when done.
		73  	stopped bool
		74  }
		75  
		76  // suspendG suspends goroutine gp at a safe-point and returns the
		77  // state of the suspended goroutine. The caller gets read access to
		78  // the goroutine until it calls resumeG.
		79  //
		80  // It is safe for multiple callers to attempt to suspend the same
		81  // goroutine at the same time. The goroutine may execute between
		82  // subsequent successful suspend operations. The current
		83  // implementation grants exclusive access to the goroutine, and hence
		84  // multiple callers will serialize. However, the intent is to grant
		85  // shared read access, so please don't depend on exclusive access.
		86  //
		87  // This must be called from the system stack and the user goroutine on
		88  // the current M (if any) must be in a preemptible state. This
		89  // prevents deadlocks where two goroutines attempt to suspend each
		90  // other and both are in non-preemptible states. There are other ways
		91  // to resolve this deadlock, but this seems simplest.
		92  //
		93  // TODO(austin): What if we instead required this to be called from a
		94  // user goroutine? Then we could deschedule the goroutine while
		95  // waiting instead of blocking the thread. If two goroutines tried to
		96  // suspend each other, one of them would win and the other wouldn't
		97  // complete the suspend until it was resumed. We would have to be
		98  // careful that they couldn't actually queue up suspend for each other
		99  // and then both be suspended. This would also avoid the need for a
	 100  // kernel context switch in the synchronous case because we could just
	 101  // directly schedule the waiter. The context switch is unavoidable in
	 102  // the signal case.
	 103  //
	 104  //go:systemstack
	 105  func suspendG(gp *g) suspendGState {
	 106  	if mp := getg().m; mp.curg != nil && readgstatus(mp.curg) == _Grunning {
	 107  		// Since we're on the system stack of this M, the user
	 108  		// G is stuck at an unsafe point. If another goroutine
	 109  		// were to try to preempt m.curg, it could deadlock.
	 110  		throw("suspendG from non-preemptible goroutine")
	 111  	}
	 112  
	 113  	// See https://golang.org/cl/21503 for justification of the yield delay.
	 114  	const yieldDelay = 10 * 1000
	 115  	var nextYield int64
	 116  
	 117  	// Drive the goroutine to a preemption point.
	 118  	stopped := false
	 119  	var asyncM *m
	 120  	var asyncGen uint32
	 121  	var nextPreemptM int64
	 122  	for i := 0; ; i++ {
	 123  		switch s := readgstatus(gp); s {
	 124  		default:
	 125  			if s&_Gscan != 0 {
	 126  				// Someone else is suspending it. Wait
	 127  				// for them to finish.
	 128  				//
	 129  				// TODO: It would be nicer if we could
	 130  				// coalesce suspends.
	 131  				break
	 132  			}
	 133  
	 134  			dumpgstatus(gp)
	 135  			throw("invalid g status")
	 136  
	 137  		case _Gdead:
	 138  			// Nothing to suspend.
	 139  			//
	 140  			// preemptStop may need to be cleared, but
	 141  			// doing that here could race with goroutine
	 142  			// reuse. Instead, goexit0 clears it.
	 143  			return suspendGState{dead: true}
	 144  
	 145  		case _Gcopystack:
	 146  			// The stack is being copied. We need to wait
	 147  			// until this is done.
	 148  
	 149  		case _Gpreempted:
	 150  			// We (or someone else) suspended the G. Claim
	 151  			// ownership of it by transitioning it to
	 152  			// _Gwaiting.
	 153  			if !casGFromPreempted(gp, _Gpreempted, _Gwaiting) {
	 154  				break
	 155  			}
	 156  
	 157  			// We stopped the G, so we have to ready it later.
	 158  			stopped = true
	 159  
	 160  			s = _Gwaiting
	 161  			fallthrough
	 162  
	 163  		case _Grunnable, _Gsyscall, _Gwaiting:
	 164  			// Claim goroutine by setting scan bit.
	 165  			// This may race with execution or readying of gp.
	 166  			// The scan bit keeps it from transition state.
	 167  			if !castogscanstatus(gp, s, s|_Gscan) {
	 168  				break
	 169  			}
	 170  
	 171  			// Clear the preemption request. It's safe to
	 172  			// reset the stack guard because we hold the
	 173  			// _Gscan bit and thus own the stack.
	 174  			gp.preemptStop = false
	 175  			gp.preempt = false
	 176  			gp.stackguard0 = gp.stack.lo + _StackGuard
	 177  
	 178  			// The goroutine was already at a safe-point
	 179  			// and we've now locked that in.
	 180  			//
	 181  			// TODO: It would be much better if we didn't
	 182  			// leave it in _Gscan, but instead gently
	 183  			// prevented its scheduling until resumption.
	 184  			// Maybe we only use this to bump a suspended
	 185  			// count and the scheduler skips suspended
	 186  			// goroutines? That wouldn't be enough for
	 187  			// {_Gsyscall,_Gwaiting} -> _Grunning. Maybe
	 188  			// for all those transitions we need to check
	 189  			// suspended and deschedule?
	 190  			return suspendGState{g: gp, stopped: stopped}
	 191  
	 192  		case _Grunning:
	 193  			// Optimization: if there is already a pending preemption request
	 194  			// (from the previous loop iteration), don't bother with the atomics.
	 195  			if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt && asyncM == gp.m && atomic.Load(&asyncM.preemptGen) == asyncGen {
	 196  				break
	 197  			}
	 198  
	 199  			// Temporarily block state transitions.
	 200  			if !castogscanstatus(gp, _Grunning, _Gscanrunning) {
	 201  				break
	 202  			}
	 203  
	 204  			// Request synchronous preemption.
	 205  			gp.preemptStop = true
	 206  			gp.preempt = true
	 207  			gp.stackguard0 = stackPreempt
	 208  
	 209  			// Prepare for asynchronous preemption.
	 210  			asyncM2 := gp.m
	 211  			asyncGen2 := atomic.Load(&asyncM2.preemptGen)
	 212  			needAsync := asyncM != asyncM2 || asyncGen != asyncGen2
	 213  			asyncM = asyncM2
	 214  			asyncGen = asyncGen2
	 215  
	 216  			casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
	 217  
	 218  			// Send asynchronous preemption. We do this
	 219  			// after CASing the G back to _Grunning
	 220  			// because preemptM may be synchronous and we
	 221  			// don't want to catch the G just spinning on
	 222  			// its status.
	 223  			if preemptMSupported && debug.asyncpreemptoff == 0 && needAsync {
	 224  				// Rate limit preemptM calls. This is
	 225  				// particularly important on Windows
	 226  				// where preemptM is actually
	 227  				// synchronous and the spin loop here
	 228  				// can lead to live-lock.
	 229  				now := nanotime()
	 230  				if now >= nextPreemptM {
	 231  					nextPreemptM = now + yieldDelay/2
	 232  					preemptM(asyncM)
	 233  				}
	 234  			}
	 235  		}
	 236  
	 237  		// TODO: Don't busy wait. This loop should really only
	 238  		// be a simple read/decide/CAS loop that only fails if
	 239  		// there's an active race. Once the CAS succeeds, we
	 240  		// should queue up the preemption (which will require
	 241  		// it to be reliable in the _Grunning case, not
	 242  		// best-effort) and then sleep until we're notified
	 243  		// that the goroutine is suspended.
	 244  		if i == 0 {
	 245  			nextYield = nanotime() + yieldDelay
	 246  		}
	 247  		if nanotime() < nextYield {
	 248  			procyield(10)
	 249  		} else {
	 250  			osyield()
	 251  			nextYield = nanotime() + yieldDelay/2
	 252  		}
	 253  	}
	 254  }
	 255  
	 256  // resumeG undoes the effects of suspendG, allowing the suspended
	 257  // goroutine to continue from its current safe-point.
	 258  func resumeG(state suspendGState) {
	 259  	if state.dead {
	 260  		// We didn't actually stop anything.
	 261  		return
	 262  	}
	 263  
	 264  	gp := state.g
	 265  	switch s := readgstatus(gp); s {
	 266  	default:
	 267  		dumpgstatus(gp)
	 268  		throw("unexpected g status")
	 269  
	 270  	case _Grunnable | _Gscan,
	 271  		_Gwaiting | _Gscan,
	 272  		_Gsyscall | _Gscan:
	 273  		casfrom_Gscanstatus(gp, s, s&^_Gscan)
	 274  	}
	 275  
	 276  	if state.stopped {
	 277  		// We stopped it, so we need to re-schedule it.
	 278  		ready(gp, 0, true)
	 279  	}
	 280  }
	 281  
	 282  // canPreemptM reports whether mp is in a state that is safe to preempt.
	 283  //
	 284  // It is nosplit because it has nosplit callers.
	 285  //
	 286  //go:nosplit
	 287  func canPreemptM(mp *m) bool {
	 288  	return mp.locks == 0 && mp.mallocing == 0 && mp.preemptoff == "" && mp.p.ptr().status == _Prunning
	 289  }
	 290  
	 291  //go:generate go run mkpreempt.go
	 292  
	 293  // asyncPreempt saves all user registers and calls asyncPreempt2.
	 294  //
	 295  // When stack scanning encounters an asyncPreempt frame, it scans that
	 296  // frame and its parent frame conservatively.
	 297  //
	 298  // asyncPreempt is implemented in assembly.
	 299  func asyncPreempt()
	 300  
	 301  //go:nosplit
	 302  func asyncPreempt2() {
	 303  	gp := getg()
	 304  	gp.asyncSafePoint = true
	 305  	if gp.preemptStop {
	 306  		mcall(preemptPark)
	 307  	} else {
	 308  		mcall(gopreempt_m)
	 309  	}
	 310  	gp.asyncSafePoint = false
	 311  }
	 312  
	 313  // asyncPreemptStack is the bytes of stack space required to inject an
	 314  // asyncPreempt call.
	 315  var asyncPreemptStack = ^uintptr(0)
	 316  
	 317  func init() {
	 318  	f := findfunc(funcPC(asyncPreempt))
	 319  	total := funcMaxSPDelta(f)
	 320  	f = findfunc(funcPC(asyncPreempt2))
	 321  	total += funcMaxSPDelta(f)
	 322  	// Add some overhead for return PCs, etc.
	 323  	asyncPreemptStack = uintptr(total) + 8*sys.PtrSize
	 324  	if asyncPreemptStack > _StackLimit {
	 325  		// We need more than the nosplit limit. This isn't
	 326  		// unsafe, but it may limit asynchronous preemption.
	 327  		//
	 328  		// This may be a problem if we start using more
	 329  		// registers. In that case, we should store registers
	 330  		// in a context object. If we pre-allocate one per P,
	 331  		// asyncPreempt can spill just a few registers to the
	 332  		// stack, then grab its context object and spill into
	 333  		// it. When it enters the runtime, it would allocate a
	 334  		// new context for the P.
	 335  		print("runtime: asyncPreemptStack=", asyncPreemptStack, "\n")
	 336  		throw("async stack too large")
	 337  	}
	 338  }
	 339  
	 340  // wantAsyncPreempt returns whether an asynchronous preemption is
	 341  // queued for gp.
	 342  func wantAsyncPreempt(gp *g) bool {
	 343  	// Check both the G and the P.
	 344  	return (gp.preempt || gp.m.p != 0 && gp.m.p.ptr().preempt) && readgstatus(gp)&^_Gscan == _Grunning
	 345  }
	 346  
	 347  // isAsyncSafePoint reports whether gp at instruction PC is an
	 348  // asynchronous safe point. This indicates that:
	 349  //
	 350  // 1. It's safe to suspend gp and conservatively scan its stack and
	 351  // registers. There are no potentially hidden pointer values and it's
	 352  // not in the middle of an atomic sequence like a write barrier.
	 353  //
	 354  // 2. gp has enough stack space to inject the asyncPreempt call.
	 355  //
	 356  // 3. It's generally safe to interact with the runtime, even if we're
	 357  // in a signal handler stopped here. For example, there are no runtime
	 358  // locks held, so acquiring a runtime lock won't self-deadlock.
	 359  //
	 360  // In some cases the PC is safe for asynchronous preemption but it
	 361  // also needs to adjust the resumption PC. The new PC is returned in
	 362  // the second result.
	 363  func isAsyncSafePoint(gp *g, pc, sp, lr uintptr) (bool, uintptr) {
	 364  	mp := gp.m
	 365  
	 366  	// Only user Gs can have safe-points. We check this first
	 367  	// because it's extremely common that we'll catch mp in the
	 368  	// scheduler processing this G preemption.
	 369  	if mp.curg != gp {
	 370  		return false, 0
	 371  	}
	 372  
	 373  	// Check M state.
	 374  	if mp.p == 0 || !canPreemptM(mp) {
	 375  		return false, 0
	 376  	}
	 377  
	 378  	// Check stack space.
	 379  	if sp < gp.stack.lo || sp-gp.stack.lo < asyncPreemptStack {
	 380  		return false, 0
	 381  	}
	 382  
	 383  	// Check if PC is an unsafe-point.
	 384  	f := findfunc(pc)
	 385  	if !f.valid() {
	 386  		// Not Go code.
	 387  		return false, 0
	 388  	}
	 389  	if (GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "mips64" || GOARCH == "mips64le") && lr == pc+8 && funcspdelta(f, pc, nil) == 0 {
	 390  		// We probably stopped at a half-executed CALL instruction,
	 391  		// where the LR is updated but the PC has not. If we preempt
	 392  		// here we'll see a seemingly self-recursive call, which is in
	 393  		// fact not.
	 394  		// This is normally ok, as we use the return address saved on
	 395  		// stack for unwinding, not the LR value. But if this is a
	 396  		// call to morestack, we haven't created the frame, and we'll
	 397  		// use the LR for unwinding, which will be bad.
	 398  		return false, 0
	 399  	}
	 400  	up, startpc := pcdatavalue2(f, _PCDATA_UnsafePoint, pc)
	 401  	if up != _PCDATA_UnsafePointSafe {
	 402  		// Unsafe-point marked by compiler. This includes
	 403  		// atomic sequences (e.g., write barrier) and nosplit
	 404  		// functions (except at calls).
	 405  		return false, 0
	 406  	}
	 407  	if fd := funcdata(f, _FUNCDATA_LocalsPointerMaps); fd == nil || fd == unsafe.Pointer(&no_pointers_stackmap) {
	 408  		// This is assembly code. Don't assume it's
	 409  		// well-formed. We identify assembly code by
	 410  		// checking that it has either no stack map, or
	 411  		// no_pointers_stackmap, which is the stack map
	 412  		// for ones marked as NO_LOCAL_POINTERS.
	 413  		//
	 414  		// TODO: Are there cases that are safe but don't have a
	 415  		// locals pointer map, like empty frame functions?
	 416  		// It might be possible to preempt any assembly functions
	 417  		// except the ones that have funcFlag_SPWRITE set in f.flag.
	 418  		return false, 0
	 419  	}
	 420  	name := funcname(f)
	 421  	if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
	 422  		inltree := (*[1 << 20]inlinedCall)(inldata)
	 423  		ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil)
	 424  		if ix >= 0 {
	 425  			name = funcnameFromNameoff(f, inltree[ix].func_)
	 426  		}
	 427  	}
	 428  	if hasPrefix(name, "runtime.") ||
	 429  		hasPrefix(name, "runtime/internal/") ||
	 430  		hasPrefix(name, "reflect.") {
	 431  		// For now we never async preempt the runtime or
	 432  		// anything closely tied to the runtime. Known issues
	 433  		// include: various points in the scheduler ("don't
	 434  		// preempt between here and here"), much of the defer
	 435  		// implementation (untyped info on stack), bulk write
	 436  		// barriers (write barrier check),
	 437  		// reflect.{makeFuncStub,methodValueCall}.
	 438  		//
	 439  		// TODO(austin): We should improve this, or opt things
	 440  		// in incrementally.
	 441  		return false, 0
	 442  	}
	 443  	switch up {
	 444  	case _PCDATA_Restart1, _PCDATA_Restart2:
	 445  		// Restartable instruction sequence. Back off PC to
	 446  		// the start PC.
	 447  		if startpc == 0 || startpc > pc || pc-startpc > 20 {
	 448  			throw("bad restart PC")
	 449  		}
	 450  		return true, startpc
	 451  	case _PCDATA_RestartAtEntry:
	 452  		// Restart from the function entry at resumption.
	 453  		return true, f.entry
	 454  	}
	 455  	return true, pc
	 456  }
	 457  
	 458  var no_pointers_stackmap uint64 // defined in assembly, for NO_LOCAL_POINTERS macro
	 459  

View as plain text