...

Source file src/runtime/sigqueue.go

Documentation: runtime

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // This file implements runtime support for signal handling.
		 6  //
		 7  // Most synchronization primitives are not available from
		 8  // the signal handler (it cannot block, allocate memory, or use locks)
		 9  // so the handler communicates with a processing goroutine
		10  // via struct sig, below.
		11  //
		12  // sigsend is called by the signal handler to queue a new signal.
		13  // signal_recv is called by the Go program to receive a newly queued signal.
		14  // Synchronization between sigsend and signal_recv is based on the sig.state
		15  // variable. It can be in 4 states: sigIdle, sigReceiving, sigSending and sigFixup.
		16  // sigReceiving means that signal_recv is blocked on sig.Note and there are no
		17  // new pending signals.
		18  // sigSending means that sig.mask *may* contain new pending signals,
		19  // signal_recv can't be blocked in this state.
		20  // sigIdle means that there are no new pending signals and signal_recv is not blocked.
		21  // sigFixup is a transient state that can only exist as a short
		22  // transition from sigReceiving and then on to sigIdle: it is
		23  // used to ensure the AllThreadsSyscall()'s mDoFixup() operation
		24  // occurs on the sleeping m, waiting to receive a signal.
		25  // Transitions between states are done atomically with CAS.
		26  // When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
		27  // If several sigsends and signal_recv execute concurrently, it can lead to
		28  // unnecessary rechecks of sig.mask, but it cannot lead to missed signals
		29  // nor deadlocks.
		30  
		31  //go:build !plan9
		32  // +build !plan9
		33  
		34  package runtime
		35  
		36  import (
		37  	"runtime/internal/atomic"
		38  	_ "unsafe" // for go:linkname
		39  )
		40  
		41  // sig handles communication between the signal handler and os/signal.
		42  // Other than the inuse and recv fields, the fields are accessed atomically.
		43  //
		44  // The wanted and ignored fields are only written by one goroutine at
		45  // a time; access is controlled by the handlers Mutex in os/signal.
		46  // The fields are only read by that one goroutine and by the signal handler.
		47  // We access them atomically to minimize the race between setting them
		48  // in the goroutine calling os/signal and the signal handler,
		49  // which may be running in a different thread. That race is unavoidable,
		50  // as there is no connection between handling a signal and receiving one,
		51  // but atomic instructions should minimize it.
		52  var sig struct {
		53  	note			 note
		54  	mask			 [(_NSIG + 31) / 32]uint32
		55  	wanted		 [(_NSIG + 31) / 32]uint32
		56  	ignored		[(_NSIG + 31) / 32]uint32
		57  	recv			 [(_NSIG + 31) / 32]uint32
		58  	state			uint32
		59  	delivering uint32
		60  	inuse			bool
		61  }
		62  
		63  const (
		64  	sigIdle = iota
		65  	sigReceiving
		66  	sigSending
		67  	sigFixup
		68  )
		69  
		70  // sigsend delivers a signal from sighandler to the internal signal delivery queue.
		71  // It reports whether the signal was sent. If not, the caller typically crashes the program.
		72  // It runs from the signal handler, so it's limited in what it can do.
		73  func sigsend(s uint32) bool {
		74  	bit := uint32(1) << uint(s&31)
		75  	if s >= uint32(32*len(sig.wanted)) {
		76  		return false
		77  	}
		78  
		79  	atomic.Xadd(&sig.delivering, 1)
		80  	// We are running in the signal handler; defer is not available.
		81  
		82  	if w := atomic.Load(&sig.wanted[s/32]); w&bit == 0 {
		83  		atomic.Xadd(&sig.delivering, -1)
		84  		return false
		85  	}
		86  
		87  	// Add signal to outgoing queue.
		88  	for {
		89  		mask := sig.mask[s/32]
		90  		if mask&bit != 0 {
		91  			atomic.Xadd(&sig.delivering, -1)
		92  			return true // signal already in queue
		93  		}
		94  		if atomic.Cas(&sig.mask[s/32], mask, mask|bit) {
		95  			break
		96  		}
		97  	}
		98  
		99  	// Notify receiver that queue has new bit.
	 100  Send:
	 101  	for {
	 102  		switch atomic.Load(&sig.state) {
	 103  		default:
	 104  			throw("sigsend: inconsistent state")
	 105  		case sigIdle:
	 106  			if atomic.Cas(&sig.state, sigIdle, sigSending) {
	 107  				break Send
	 108  			}
	 109  		case sigSending:
	 110  			// notification already pending
	 111  			break Send
	 112  		case sigReceiving:
	 113  			if atomic.Cas(&sig.state, sigReceiving, sigIdle) {
	 114  				if GOOS == "darwin" || GOOS == "ios" {
	 115  					sigNoteWakeup(&sig.note)
	 116  					break Send
	 117  				}
	 118  				notewakeup(&sig.note)
	 119  				break Send
	 120  			}
	 121  		case sigFixup:
	 122  			// nothing to do - we need to wait for sigIdle.
	 123  			mDoFixupAndOSYield()
	 124  		}
	 125  	}
	 126  
	 127  	atomic.Xadd(&sig.delivering, -1)
	 128  	return true
	 129  }
	 130  
	 131  // sigRecvPrepareForFixup is used to temporarily wake up the
	 132  // signal_recv() running thread while it is blocked waiting for the
	 133  // arrival of a signal. If it causes the thread to wake up, the
	 134  // sig.state travels through this sequence: sigReceiving -> sigFixup
	 135  // -> sigIdle -> sigReceiving and resumes. (This is only called while
	 136  // GC is disabled.)
	 137  //go:nosplit
	 138  func sigRecvPrepareForFixup() {
	 139  	if atomic.Cas(&sig.state, sigReceiving, sigFixup) {
	 140  		notewakeup(&sig.note)
	 141  	}
	 142  }
	 143  
	 144  // Called to receive the next queued signal.
	 145  // Must only be called from a single goroutine at a time.
	 146  //go:linkname signal_recv os/signal.signal_recv
	 147  func signal_recv() uint32 {
	 148  	for {
	 149  		// Serve any signals from local copy.
	 150  		for i := uint32(0); i < _NSIG; i++ {
	 151  			if sig.recv[i/32]&(1<<(i&31)) != 0 {
	 152  				sig.recv[i/32] &^= 1 << (i & 31)
	 153  				return i
	 154  			}
	 155  		}
	 156  
	 157  		// Wait for updates to be available from signal sender.
	 158  	Receive:
	 159  		for {
	 160  			switch atomic.Load(&sig.state) {
	 161  			default:
	 162  				throw("signal_recv: inconsistent state")
	 163  			case sigIdle:
	 164  				if atomic.Cas(&sig.state, sigIdle, sigReceiving) {
	 165  					if GOOS == "darwin" || GOOS == "ios" {
	 166  						sigNoteSleep(&sig.note)
	 167  						break Receive
	 168  					}
	 169  					notetsleepg(&sig.note, -1)
	 170  					noteclear(&sig.note)
	 171  					if !atomic.Cas(&sig.state, sigFixup, sigIdle) {
	 172  						break Receive
	 173  					}
	 174  					// Getting here, the code will
	 175  					// loop around again to sleep
	 176  					// in state sigReceiving. This
	 177  					// path is taken when
	 178  					// sigRecvPrepareForFixup()
	 179  					// has been called by another
	 180  					// thread.
	 181  				}
	 182  			case sigSending:
	 183  				if atomic.Cas(&sig.state, sigSending, sigIdle) {
	 184  					break Receive
	 185  				}
	 186  			}
	 187  		}
	 188  
	 189  		// Incorporate updates from sender into local copy.
	 190  		for i := range sig.mask {
	 191  			sig.recv[i] = atomic.Xchg(&sig.mask[i], 0)
	 192  		}
	 193  	}
	 194  }
	 195  
	 196  // signalWaitUntilIdle waits until the signal delivery mechanism is idle.
	 197  // This is used to ensure that we do not drop a signal notification due
	 198  // to a race between disabling a signal and receiving a signal.
	 199  // This assumes that signal delivery has already been disabled for
	 200  // the signal(s) in question, and here we are just waiting to make sure
	 201  // that all the signals have been delivered to the user channels
	 202  // by the os/signal package.
	 203  //go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
	 204  func signalWaitUntilIdle() {
	 205  	// Although the signals we care about have been removed from
	 206  	// sig.wanted, it is possible that another thread has received
	 207  	// a signal, has read from sig.wanted, is now updating sig.mask,
	 208  	// and has not yet woken up the processor thread. We need to wait
	 209  	// until all current signal deliveries have completed.
	 210  	for atomic.Load(&sig.delivering) != 0 {
	 211  		Gosched()
	 212  	}
	 213  
	 214  	// Although WaitUntilIdle seems like the right name for this
	 215  	// function, the state we are looking for is sigReceiving, not
	 216  	// sigIdle.	The sigIdle state is really more like sigProcessing.
	 217  	for atomic.Load(&sig.state) != sigReceiving {
	 218  		Gosched()
	 219  	}
	 220  }
	 221  
	 222  // Must only be called from a single goroutine at a time.
	 223  //go:linkname signal_enable os/signal.signal_enable
	 224  func signal_enable(s uint32) {
	 225  	if !sig.inuse {
	 226  		// This is the first call to signal_enable. Initialize.
	 227  		sig.inuse = true // enable reception of signals; cannot disable
	 228  		if GOOS == "darwin" || GOOS == "ios" {
	 229  			sigNoteSetup(&sig.note)
	 230  		} else {
	 231  			noteclear(&sig.note)
	 232  		}
	 233  	}
	 234  
	 235  	if s >= uint32(len(sig.wanted)*32) {
	 236  		return
	 237  	}
	 238  
	 239  	w := sig.wanted[s/32]
	 240  	w |= 1 << (s & 31)
	 241  	atomic.Store(&sig.wanted[s/32], w)
	 242  
	 243  	i := sig.ignored[s/32]
	 244  	i &^= 1 << (s & 31)
	 245  	atomic.Store(&sig.ignored[s/32], i)
	 246  
	 247  	sigenable(s)
	 248  }
	 249  
	 250  // Must only be called from a single goroutine at a time.
	 251  //go:linkname signal_disable os/signal.signal_disable
	 252  func signal_disable(s uint32) {
	 253  	if s >= uint32(len(sig.wanted)*32) {
	 254  		return
	 255  	}
	 256  	sigdisable(s)
	 257  
	 258  	w := sig.wanted[s/32]
	 259  	w &^= 1 << (s & 31)
	 260  	atomic.Store(&sig.wanted[s/32], w)
	 261  }
	 262  
	 263  // Must only be called from a single goroutine at a time.
	 264  //go:linkname signal_ignore os/signal.signal_ignore
	 265  func signal_ignore(s uint32) {
	 266  	if s >= uint32(len(sig.wanted)*32) {
	 267  		return
	 268  	}
	 269  	sigignore(s)
	 270  
	 271  	w := sig.wanted[s/32]
	 272  	w &^= 1 << (s & 31)
	 273  	atomic.Store(&sig.wanted[s/32], w)
	 274  
	 275  	i := sig.ignored[s/32]
	 276  	i |= 1 << (s & 31)
	 277  	atomic.Store(&sig.ignored[s/32], i)
	 278  }
	 279  
	 280  // sigInitIgnored marks the signal as already ignored. This is called at
	 281  // program start by initsig. In a shared library initsig is called by
	 282  // libpreinit, so the runtime may not be initialized yet.
	 283  //go:nosplit
	 284  func sigInitIgnored(s uint32) {
	 285  	i := sig.ignored[s/32]
	 286  	i |= 1 << (s & 31)
	 287  	atomic.Store(&sig.ignored[s/32], i)
	 288  }
	 289  
	 290  // Checked by signal handlers.
	 291  //go:linkname signal_ignored os/signal.signal_ignored
	 292  func signal_ignored(s uint32) bool {
	 293  	i := atomic.Load(&sig.ignored[s/32])
	 294  	return i&(1<<(s&31)) != 0
	 295  }
	 296  

View as plain text