...

Source file src/strconv/itoa.go

Documentation: strconv

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package strconv
		 6  
		 7  import "math/bits"
		 8  
		 9  const fastSmalls = true // enable fast path for small integers
		10  
		11  // FormatUint returns the string representation of i in the given base,
		12  // for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z'
		13  // for digit values >= 10.
		14  func FormatUint(i uint64, base int) string {
		15  	if fastSmalls && i < nSmalls && base == 10 {
		16  		return small(int(i))
		17  	}
		18  	_, s := formatBits(nil, i, base, false, false)
		19  	return s
		20  }
		21  
		22  // FormatInt returns the string representation of i in the given base,
		23  // for 2 <= base <= 36. The result uses the lower-case letters 'a' to 'z'
		24  // for digit values >= 10.
		25  func FormatInt(i int64, base int) string {
		26  	if fastSmalls && 0 <= i && i < nSmalls && base == 10 {
		27  		return small(int(i))
		28  	}
		29  	_, s := formatBits(nil, uint64(i), base, i < 0, false)
		30  	return s
		31  }
		32  
		33  // Itoa is equivalent to FormatInt(int64(i), 10).
		34  func Itoa(i int) string {
		35  	return FormatInt(int64(i), 10)
		36  }
		37  
		38  // AppendInt appends the string form of the integer i,
		39  // as generated by FormatInt, to dst and returns the extended buffer.
		40  func AppendInt(dst []byte, i int64, base int) []byte {
		41  	if fastSmalls && 0 <= i && i < nSmalls && base == 10 {
		42  		return append(dst, small(int(i))...)
		43  	}
		44  	dst, _ = formatBits(dst, uint64(i), base, i < 0, true)
		45  	return dst
		46  }
		47  
		48  // AppendUint appends the string form of the unsigned integer i,
		49  // as generated by FormatUint, to dst and returns the extended buffer.
		50  func AppendUint(dst []byte, i uint64, base int) []byte {
		51  	if fastSmalls && i < nSmalls && base == 10 {
		52  		return append(dst, small(int(i))...)
		53  	}
		54  	dst, _ = formatBits(dst, i, base, false, true)
		55  	return dst
		56  }
		57  
		58  // small returns the string for an i with 0 <= i < nSmalls.
		59  func small(i int) string {
		60  	if i < 10 {
		61  		return digits[i : i+1]
		62  	}
		63  	return smallsString[i*2 : i*2+2]
		64  }
		65  
		66  const nSmalls = 100
		67  
		68  const smallsString = "00010203040506070809" +
		69  	"10111213141516171819" +
		70  	"20212223242526272829" +
		71  	"30313233343536373839" +
		72  	"40414243444546474849" +
		73  	"50515253545556575859" +
		74  	"60616263646566676869" +
		75  	"70717273747576777879" +
		76  	"80818283848586878889" +
		77  	"90919293949596979899"
		78  
		79  const host32bit = ^uint(0)>>32 == 0
		80  
		81  const digits = "0123456789abcdefghijklmnopqrstuvwxyz"
		82  
		83  // formatBits computes the string representation of u in the given base.
		84  // If neg is set, u is treated as negative int64 value. If append_ is
		85  // set, the string is appended to dst and the resulting byte slice is
		86  // returned as the first result value; otherwise the string is returned
		87  // as the second result value.
		88  //
		89  func formatBits(dst []byte, u uint64, base int, neg, append_ bool) (d []byte, s string) {
		90  	if base < 2 || base > len(digits) {
		91  		panic("strconv: illegal AppendInt/FormatInt base")
		92  	}
		93  	// 2 <= base && base <= len(digits)
		94  
		95  	var a [64 + 1]byte // +1 for sign of 64bit value in base 2
		96  	i := len(a)
		97  
		98  	if neg {
		99  		u = -u
	 100  	}
	 101  
	 102  	// convert bits
	 103  	// We use uint values where we can because those will
	 104  	// fit into a single register even on a 32bit machine.
	 105  	if base == 10 {
	 106  		// common case: use constants for / because
	 107  		// the compiler can optimize it into a multiply+shift
	 108  
	 109  		if host32bit {
	 110  			// convert the lower digits using 32bit operations
	 111  			for u >= 1e9 {
	 112  				// Avoid using r = a%b in addition to q = a/b
	 113  				// since 64bit division and modulo operations
	 114  				// are calculated by runtime functions on 32bit machines.
	 115  				q := u / 1e9
	 116  				us := uint(u - q*1e9) // u % 1e9 fits into a uint
	 117  				for j := 4; j > 0; j-- {
	 118  					is := us % 100 * 2
	 119  					us /= 100
	 120  					i -= 2
	 121  					a[i+1] = smallsString[is+1]
	 122  					a[i+0] = smallsString[is+0]
	 123  				}
	 124  
	 125  				// us < 10, since it contains the last digit
	 126  				// from the initial 9-digit us.
	 127  				i--
	 128  				a[i] = smallsString[us*2+1]
	 129  
	 130  				u = q
	 131  			}
	 132  			// u < 1e9
	 133  		}
	 134  
	 135  		// u guaranteed to fit into a uint
	 136  		us := uint(u)
	 137  		for us >= 100 {
	 138  			is := us % 100 * 2
	 139  			us /= 100
	 140  			i -= 2
	 141  			a[i+1] = smallsString[is+1]
	 142  			a[i+0] = smallsString[is+0]
	 143  		}
	 144  
	 145  		// us < 100
	 146  		is := us * 2
	 147  		i--
	 148  		a[i] = smallsString[is+1]
	 149  		if us >= 10 {
	 150  			i--
	 151  			a[i] = smallsString[is]
	 152  		}
	 153  
	 154  	} else if isPowerOfTwo(base) {
	 155  		// Use shifts and masks instead of / and %.
	 156  		// Base is a power of 2 and 2 <= base <= len(digits) where len(digits) is 36.
	 157  		// The largest power of 2 below or equal to 36 is 32, which is 1 << 5;
	 158  		// i.e., the largest possible shift count is 5. By &-ind that value with
	 159  		// the constant 7 we tell the compiler that the shift count is always
	 160  		// less than 8 which is smaller than any register width. This allows
	 161  		// the compiler to generate better code for the shift operation.
	 162  		shift := uint(bits.TrailingZeros(uint(base))) & 7
	 163  		b := uint64(base)
	 164  		m := uint(base) - 1 // == 1<<shift - 1
	 165  		for u >= b {
	 166  			i--
	 167  			a[i] = digits[uint(u)&m]
	 168  			u >>= shift
	 169  		}
	 170  		// u < base
	 171  		i--
	 172  		a[i] = digits[uint(u)]
	 173  	} else {
	 174  		// general case
	 175  		b := uint64(base)
	 176  		for u >= b {
	 177  			i--
	 178  			// Avoid using r = a%b in addition to q = a/b
	 179  			// since 64bit division and modulo operations
	 180  			// are calculated by runtime functions on 32bit machines.
	 181  			q := u / b
	 182  			a[i] = digits[uint(u-q*b)]
	 183  			u = q
	 184  		}
	 185  		// u < base
	 186  		i--
	 187  		a[i] = digits[uint(u)]
	 188  	}
	 189  
	 190  	// add sign, if any
	 191  	if neg {
	 192  		i--
	 193  		a[i] = '-'
	 194  	}
	 195  
	 196  	if append_ {
	 197  		d = append(dst, a[i:]...)
	 198  		return
	 199  	}
	 200  	s = string(a[i:])
	 201  	return
	 202  }
	 203  
	 204  func isPowerOfTwo(x int) bool {
	 205  	return x&(x-1) == 0
	 206  }
	 207  

View as plain text