...

Source file src/math/rand/rand_test.go

Documentation: math/rand

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package rand_test
		 6  
		 7  import (
		 8  	"bytes"
		 9  	"errors"
		10  	"fmt"
		11  	"internal/testenv"
		12  	"io"
		13  	"math"
		14  	. "math/rand"
		15  	"os"
		16  	"runtime"
		17  	"testing"
		18  	"testing/iotest"
		19  )
		20  
		21  const (
		22  	numTestSamples = 10000
		23  )
		24  
		25  var rn, kn, wn, fn = GetNormalDistributionParameters()
		26  var re, ke, we, fe = GetExponentialDistributionParameters()
		27  
		28  type statsResults struct {
		29  	mean				float64
		30  	stddev			float64
		31  	closeEnough float64
		32  	maxError		float64
		33  }
		34  
		35  func max(a, b float64) float64 {
		36  	if a > b {
		37  		return a
		38  	}
		39  	return b
		40  }
		41  
		42  func nearEqual(a, b, closeEnough, maxError float64) bool {
		43  	absDiff := math.Abs(a - b)
		44  	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
		45  		return true
		46  	}
		47  	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
		48  }
		49  
		50  var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
		51  
		52  // checkSimilarDistribution returns success if the mean and stddev of the
		53  // two statsResults are similar.
		54  func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
		55  	if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
		56  		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
		57  		fmt.Println(s)
		58  		return errors.New(s)
		59  	}
		60  	if !nearEqual(this.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
		61  		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
		62  		fmt.Println(s)
		63  		return errors.New(s)
		64  	}
		65  	return nil
		66  }
		67  
		68  func getStatsResults(samples []float64) *statsResults {
		69  	res := new(statsResults)
		70  	var sum, squaresum float64
		71  	for _, s := range samples {
		72  		sum += s
		73  		squaresum += s * s
		74  	}
		75  	res.mean = sum / float64(len(samples))
		76  	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
		77  	return res
		78  }
		79  
		80  func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
		81  	t.Helper()
		82  	actual := getStatsResults(samples)
		83  	err := actual.checkSimilarDistribution(expected)
		84  	if err != nil {
		85  		t.Errorf(err.Error())
		86  	}
		87  }
		88  
		89  func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
		90  	t.Helper()
		91  	chunk := len(samples) / nslices
		92  	for i := 0; i < nslices; i++ {
		93  		low := i * chunk
		94  		var high int
		95  		if i == nslices-1 {
		96  			high = len(samples) - 1
		97  		} else {
		98  			high = (i + 1) * chunk
		99  		}
	 100  		checkSampleDistribution(t, samples[low:high], expected)
	 101  	}
	 102  }
	 103  
	 104  //
	 105  // Normal distribution tests
	 106  //
	 107  
	 108  func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
	 109  	r := New(NewSource(seed))
	 110  	samples := make([]float64, nsamples)
	 111  	for i := range samples {
	 112  		samples[i] = r.NormFloat64()*stddev + mean
	 113  	}
	 114  	return samples
	 115  }
	 116  
	 117  func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
	 118  	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
	 119  
	 120  	samples := generateNormalSamples(nsamples, mean, stddev, seed)
	 121  	errorScale := max(1.0, stddev) // Error scales with stddev
	 122  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
	 123  
	 124  	// Make sure that the entire set matches the expected distribution.
	 125  	checkSampleDistribution(t, samples, expected)
	 126  
	 127  	// Make sure that each half of the set matches the expected distribution.
	 128  	checkSampleSliceDistributions(t, samples, 2, expected)
	 129  
	 130  	// Make sure that each 7th of the set matches the expected distribution.
	 131  	checkSampleSliceDistributions(t, samples, 7, expected)
	 132  }
	 133  
	 134  // Actual tests
	 135  
	 136  func TestStandardNormalValues(t *testing.T) {
	 137  	for _, seed := range testSeeds {
	 138  		testNormalDistribution(t, numTestSamples, 0, 1, seed)
	 139  	}
	 140  }
	 141  
	 142  func TestNonStandardNormalValues(t *testing.T) {
	 143  	sdmax := 1000.0
	 144  	mmax := 1000.0
	 145  	if testing.Short() {
	 146  		sdmax = 5
	 147  		mmax = 5
	 148  	}
	 149  	for sd := 0.5; sd < sdmax; sd *= 2 {
	 150  		for m := 0.5; m < mmax; m *= 2 {
	 151  			for _, seed := range testSeeds {
	 152  				testNormalDistribution(t, numTestSamples, m, sd, seed)
	 153  				if testing.Short() {
	 154  					break
	 155  				}
	 156  			}
	 157  		}
	 158  	}
	 159  }
	 160  
	 161  //
	 162  // Exponential distribution tests
	 163  //
	 164  
	 165  func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
	 166  	r := New(NewSource(seed))
	 167  	samples := make([]float64, nsamples)
	 168  	for i := range samples {
	 169  		samples[i] = r.ExpFloat64() / rate
	 170  	}
	 171  	return samples
	 172  }
	 173  
	 174  func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
	 175  	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
	 176  
	 177  	mean := 1 / rate
	 178  	stddev := mean
	 179  
	 180  	samples := generateExponentialSamples(nsamples, rate, seed)
	 181  	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
	 182  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
	 183  
	 184  	// Make sure that the entire set matches the expected distribution.
	 185  	checkSampleDistribution(t, samples, expected)
	 186  
	 187  	// Make sure that each half of the set matches the expected distribution.
	 188  	checkSampleSliceDistributions(t, samples, 2, expected)
	 189  
	 190  	// Make sure that each 7th of the set matches the expected distribution.
	 191  	checkSampleSliceDistributions(t, samples, 7, expected)
	 192  }
	 193  
	 194  // Actual tests
	 195  
	 196  func TestStandardExponentialValues(t *testing.T) {
	 197  	for _, seed := range testSeeds {
	 198  		testExponentialDistribution(t, numTestSamples, 1, seed)
	 199  	}
	 200  }
	 201  
	 202  func TestNonStandardExponentialValues(t *testing.T) {
	 203  	for rate := 0.05; rate < 10; rate *= 2 {
	 204  		for _, seed := range testSeeds {
	 205  			testExponentialDistribution(t, numTestSamples, rate, seed)
	 206  			if testing.Short() {
	 207  				break
	 208  			}
	 209  		}
	 210  	}
	 211  }
	 212  
	 213  //
	 214  // Table generation tests
	 215  //
	 216  
	 217  func initNorm() (testKn []uint32, testWn, testFn []float32) {
	 218  	const m1 = 1 << 31
	 219  	var (
	 220  		dn float64 = rn
	 221  		tn				 = dn
	 222  		vn float64 = 9.91256303526217e-3
	 223  	)
	 224  
	 225  	testKn = make([]uint32, 128)
	 226  	testWn = make([]float32, 128)
	 227  	testFn = make([]float32, 128)
	 228  
	 229  	q := vn / math.Exp(-0.5*dn*dn)
	 230  	testKn[0] = uint32((dn / q) * m1)
	 231  	testKn[1] = 0
	 232  	testWn[0] = float32(q / m1)
	 233  	testWn[127] = float32(dn / m1)
	 234  	testFn[0] = 1.0
	 235  	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
	 236  	for i := 126; i >= 1; i-- {
	 237  		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
	 238  		testKn[i+1] = uint32((dn / tn) * m1)
	 239  		tn = dn
	 240  		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
	 241  		testWn[i] = float32(dn / m1)
	 242  	}
	 243  	return
	 244  }
	 245  
	 246  func initExp() (testKe []uint32, testWe, testFe []float32) {
	 247  	const m2 = 1 << 32
	 248  	var (
	 249  		de float64 = re
	 250  		te				 = de
	 251  		ve float64 = 3.9496598225815571993e-3
	 252  	)
	 253  
	 254  	testKe = make([]uint32, 256)
	 255  	testWe = make([]float32, 256)
	 256  	testFe = make([]float32, 256)
	 257  
	 258  	q := ve / math.Exp(-de)
	 259  	testKe[0] = uint32((de / q) * m2)
	 260  	testKe[1] = 0
	 261  	testWe[0] = float32(q / m2)
	 262  	testWe[255] = float32(de / m2)
	 263  	testFe[0] = 1.0
	 264  	testFe[255] = float32(math.Exp(-de))
	 265  	for i := 254; i >= 1; i-- {
	 266  		de = -math.Log(ve/de + math.Exp(-de))
	 267  		testKe[i+1] = uint32((de / te) * m2)
	 268  		te = de
	 269  		testFe[i] = float32(math.Exp(-de))
	 270  		testWe[i] = float32(de / m2)
	 271  	}
	 272  	return
	 273  }
	 274  
	 275  // compareUint32Slices returns the first index where the two slices
	 276  // disagree, or <0 if the lengths are the same and all elements
	 277  // are identical.
	 278  func compareUint32Slices(s1, s2 []uint32) int {
	 279  	if len(s1) != len(s2) {
	 280  		if len(s1) > len(s2) {
	 281  			return len(s2) + 1
	 282  		}
	 283  		return len(s1) + 1
	 284  	}
	 285  	for i := range s1 {
	 286  		if s1[i] != s2[i] {
	 287  			return i
	 288  		}
	 289  	}
	 290  	return -1
	 291  }
	 292  
	 293  // compareFloat32Slices returns the first index where the two slices
	 294  // disagree, or <0 if the lengths are the same and all elements
	 295  // are identical.
	 296  func compareFloat32Slices(s1, s2 []float32) int {
	 297  	if len(s1) != len(s2) {
	 298  		if len(s1) > len(s2) {
	 299  			return len(s2) + 1
	 300  		}
	 301  		return len(s1) + 1
	 302  	}
	 303  	for i := range s1 {
	 304  		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
	 305  			return i
	 306  		}
	 307  	}
	 308  	return -1
	 309  }
	 310  
	 311  func TestNormTables(t *testing.T) {
	 312  	testKn, testWn, testFn := initNorm()
	 313  	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
	 314  		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
	 315  	}
	 316  	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
	 317  		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
	 318  	}
	 319  	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
	 320  		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
	 321  	}
	 322  }
	 323  
	 324  func TestExpTables(t *testing.T) {
	 325  	testKe, testWe, testFe := initExp()
	 326  	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
	 327  		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
	 328  	}
	 329  	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
	 330  		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
	 331  	}
	 332  	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
	 333  		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
	 334  	}
	 335  }
	 336  
	 337  func hasSlowFloatingPoint() bool {
	 338  	switch runtime.GOARCH {
	 339  	case "arm":
	 340  		return os.Getenv("GOARM") == "5"
	 341  	case "mips", "mipsle", "mips64", "mips64le":
	 342  		// Be conservative and assume that all mips boards
	 343  		// have emulated floating point.
	 344  		// TODO: detect what it actually has.
	 345  		return true
	 346  	}
	 347  	return false
	 348  }
	 349  
	 350  func TestFloat32(t *testing.T) {
	 351  	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
	 352  	num := int(10e6)
	 353  	// But do the full amount only on builders (not locally).
	 354  	// But ARM5 floating point emulation is slow (Issue 10749), so
	 355  	// do less for that builder:
	 356  	if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
	 357  		num /= 100 // 1.72 seconds instead of 172 seconds
	 358  	}
	 359  
	 360  	r := New(NewSource(1))
	 361  	for ct := 0; ct < num; ct++ {
	 362  		f := r.Float32()
	 363  		if f >= 1 {
	 364  			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
	 365  		}
	 366  	}
	 367  }
	 368  
	 369  func testReadUniformity(t *testing.T, n int, seed int64) {
	 370  	r := New(NewSource(seed))
	 371  	buf := make([]byte, n)
	 372  	nRead, err := r.Read(buf)
	 373  	if err != nil {
	 374  		t.Errorf("Read err %v", err)
	 375  	}
	 376  	if nRead != n {
	 377  		t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
	 378  	}
	 379  
	 380  	// Expect a uniform distribution of byte values, which lie in [0, 255].
	 381  	var (
	 382  		mean			 = 255.0 / 2
	 383  		stddev		 = 256.0 / math.Sqrt(12.0)
	 384  		errorScale = stddev / math.Sqrt(float64(n))
	 385  	)
	 386  
	 387  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
	 388  
	 389  	// Cast bytes as floats to use the common distribution-validity checks.
	 390  	samples := make([]float64, n)
	 391  	for i, val := range buf {
	 392  		samples[i] = float64(val)
	 393  	}
	 394  	// Make sure that the entire set matches the expected distribution.
	 395  	checkSampleDistribution(t, samples, expected)
	 396  }
	 397  
	 398  func TestReadUniformity(t *testing.T) {
	 399  	testBufferSizes := []int{
	 400  		2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
	 401  	}
	 402  	for _, seed := range testSeeds {
	 403  		for _, n := range testBufferSizes {
	 404  			testReadUniformity(t, n, seed)
	 405  		}
	 406  	}
	 407  }
	 408  
	 409  func TestReadEmpty(t *testing.T) {
	 410  	r := New(NewSource(1))
	 411  	buf := make([]byte, 0)
	 412  	n, err := r.Read(buf)
	 413  	if err != nil {
	 414  		t.Errorf("Read err into empty buffer; %v", err)
	 415  	}
	 416  	if n != 0 {
	 417  		t.Errorf("Read into empty buffer returned unexpected n of %d", n)
	 418  	}
	 419  }
	 420  
	 421  func TestReadByOneByte(t *testing.T) {
	 422  	r := New(NewSource(1))
	 423  	b1 := make([]byte, 100)
	 424  	_, err := io.ReadFull(iotest.OneByteReader(r), b1)
	 425  	if err != nil {
	 426  		t.Errorf("read by one byte: %v", err)
	 427  	}
	 428  	r = New(NewSource(1))
	 429  	b2 := make([]byte, 100)
	 430  	_, err = r.Read(b2)
	 431  	if err != nil {
	 432  		t.Errorf("read: %v", err)
	 433  	}
	 434  	if !bytes.Equal(b1, b2) {
	 435  		t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
	 436  	}
	 437  }
	 438  
	 439  func TestReadSeedReset(t *testing.T) {
	 440  	r := New(NewSource(42))
	 441  	b1 := make([]byte, 128)
	 442  	_, err := r.Read(b1)
	 443  	if err != nil {
	 444  		t.Errorf("read: %v", err)
	 445  	}
	 446  	r.Seed(42)
	 447  	b2 := make([]byte, 128)
	 448  	_, err = r.Read(b2)
	 449  	if err != nil {
	 450  		t.Errorf("read: %v", err)
	 451  	}
	 452  	if !bytes.Equal(b1, b2) {
	 453  		t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
	 454  	}
	 455  }
	 456  
	 457  func TestShuffleSmall(t *testing.T) {
	 458  	// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
	 459  	r := New(NewSource(1))
	 460  	for n := 0; n <= 1; n++ {
	 461  		r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
	 462  	}
	 463  }
	 464  
	 465  // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
	 466  // See https://en.wikipedia.org/wiki/Lehmer_code.
	 467  // encodePerm modifies the input slice.
	 468  func encodePerm(s []int) int {
	 469  	// Convert to Lehmer code.
	 470  	for i, x := range s {
	 471  		r := s[i+1:]
	 472  		for j, y := range r {
	 473  			if y > x {
	 474  				r[j]--
	 475  			}
	 476  		}
	 477  	}
	 478  	// Convert to int in [0, n!).
	 479  	m := 0
	 480  	fact := 1
	 481  	for i := len(s) - 1; i >= 0; i-- {
	 482  		m += s[i] * fact
	 483  		fact *= len(s) - i
	 484  	}
	 485  	return m
	 486  }
	 487  
	 488  // TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
	 489  func TestUniformFactorial(t *testing.T) {
	 490  	r := New(NewSource(testSeeds[0]))
	 491  	top := 6
	 492  	if testing.Short() {
	 493  		top = 3
	 494  	}
	 495  	for n := 3; n <= top; n++ {
	 496  		t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
	 497  			// Calculate n!.
	 498  			nfact := 1
	 499  			for i := 2; i <= n; i++ {
	 500  				nfact *= i
	 501  			}
	 502  
	 503  			// Test a few different ways to generate a uniform distribution.
	 504  			p := make([]int, n) // re-usable slice for Shuffle generator
	 505  			tests := [...]struct {
	 506  				name string
	 507  				fn	 func() int
	 508  			}{
	 509  				{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
	 510  				{name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
	 511  				{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
	 512  				{name: "Shuffle", fn: func() int {
	 513  					// Generate permutation using Shuffle.
	 514  					for i := range p {
	 515  						p[i] = i
	 516  					}
	 517  					r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
	 518  					return encodePerm(p)
	 519  				}},
	 520  			}
	 521  
	 522  			for _, test := range tests {
	 523  				t.Run(test.name, func(t *testing.T) {
	 524  					// Gather chi-squared values and check that they follow
	 525  					// the expected normal distribution given n!-1 degrees of freedom.
	 526  					// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
	 527  					// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
	 528  					nsamples := 10 * nfact
	 529  					if nsamples < 200 {
	 530  						nsamples = 200
	 531  					}
	 532  					samples := make([]float64, nsamples)
	 533  					for i := range samples {
	 534  						// Generate some uniformly distributed values and count their occurrences.
	 535  						const iters = 1000
	 536  						counts := make([]int, nfact)
	 537  						for i := 0; i < iters; i++ {
	 538  							counts[test.fn()]++
	 539  						}
	 540  						// Calculate chi-squared and add to samples.
	 541  						want := iters / float64(nfact)
	 542  						var χ2 float64
	 543  						for _, have := range counts {
	 544  							err := float64(have) - want
	 545  							χ2 += err * err
	 546  						}
	 547  						χ2 /= want
	 548  						samples[i] = χ2
	 549  					}
	 550  
	 551  					// Check that our samples approximate the appropriate normal distribution.
	 552  					dof := float64(nfact - 1)
	 553  					expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
	 554  					errorScale := max(1.0, expected.stddev)
	 555  					expected.closeEnough = 0.10 * errorScale
	 556  					expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
	 557  					checkSampleDistribution(t, samples, expected)
	 558  				})
	 559  			}
	 560  		})
	 561  	}
	 562  }
	 563  
	 564  // Benchmarks
	 565  
	 566  func BenchmarkInt63Threadsafe(b *testing.B) {
	 567  	for n := b.N; n > 0; n-- {
	 568  		Int63()
	 569  	}
	 570  }
	 571  
	 572  func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
	 573  	b.RunParallel(func(pb *testing.PB) {
	 574  		for pb.Next() {
	 575  			Int63()
	 576  		}
	 577  	})
	 578  }
	 579  
	 580  func BenchmarkInt63Unthreadsafe(b *testing.B) {
	 581  	r := New(NewSource(1))
	 582  	for n := b.N; n > 0; n-- {
	 583  		r.Int63()
	 584  	}
	 585  }
	 586  
	 587  func BenchmarkIntn1000(b *testing.B) {
	 588  	r := New(NewSource(1))
	 589  	for n := b.N; n > 0; n-- {
	 590  		r.Intn(1000)
	 591  	}
	 592  }
	 593  
	 594  func BenchmarkInt63n1000(b *testing.B) {
	 595  	r := New(NewSource(1))
	 596  	for n := b.N; n > 0; n-- {
	 597  		r.Int63n(1000)
	 598  	}
	 599  }
	 600  
	 601  func BenchmarkInt31n1000(b *testing.B) {
	 602  	r := New(NewSource(1))
	 603  	for n := b.N; n > 0; n-- {
	 604  		r.Int31n(1000)
	 605  	}
	 606  }
	 607  
	 608  func BenchmarkFloat32(b *testing.B) {
	 609  	r := New(NewSource(1))
	 610  	for n := b.N; n > 0; n-- {
	 611  		r.Float32()
	 612  	}
	 613  }
	 614  
	 615  func BenchmarkFloat64(b *testing.B) {
	 616  	r := New(NewSource(1))
	 617  	for n := b.N; n > 0; n-- {
	 618  		r.Float64()
	 619  	}
	 620  }
	 621  
	 622  func BenchmarkPerm3(b *testing.B) {
	 623  	r := New(NewSource(1))
	 624  	for n := b.N; n > 0; n-- {
	 625  		r.Perm(3)
	 626  	}
	 627  }
	 628  
	 629  func BenchmarkPerm30(b *testing.B) {
	 630  	r := New(NewSource(1))
	 631  	for n := b.N; n > 0; n-- {
	 632  		r.Perm(30)
	 633  	}
	 634  }
	 635  
	 636  func BenchmarkPerm30ViaShuffle(b *testing.B) {
	 637  	r := New(NewSource(1))
	 638  	for n := b.N; n > 0; n-- {
	 639  		p := make([]int, 30)
	 640  		for i := range p {
	 641  			p[i] = i
	 642  		}
	 643  		r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
	 644  	}
	 645  }
	 646  
	 647  // BenchmarkShuffleOverhead uses a minimal swap function
	 648  // to measure just the shuffling overhead.
	 649  func BenchmarkShuffleOverhead(b *testing.B) {
	 650  	r := New(NewSource(1))
	 651  	for n := b.N; n > 0; n-- {
	 652  		r.Shuffle(52, func(i, j int) {
	 653  			if i < 0 || i >= 52 || j < 0 || j >= 52 {
	 654  				b.Fatalf("bad swap(%d, %d)", i, j)
	 655  			}
	 656  		})
	 657  	}
	 658  }
	 659  
	 660  func BenchmarkRead3(b *testing.B) {
	 661  	r := New(NewSource(1))
	 662  	buf := make([]byte, 3)
	 663  	b.ResetTimer()
	 664  	for n := b.N; n > 0; n-- {
	 665  		r.Read(buf)
	 666  	}
	 667  }
	 668  
	 669  func BenchmarkRead64(b *testing.B) {
	 670  	r := New(NewSource(1))
	 671  	buf := make([]byte, 64)
	 672  	b.ResetTimer()
	 673  	for n := b.N; n > 0; n-- {
	 674  		r.Read(buf)
	 675  	}
	 676  }
	 677  
	 678  func BenchmarkRead1000(b *testing.B) {
	 679  	r := New(NewSource(1))
	 680  	buf := make([]byte, 1000)
	 681  	b.ResetTimer()
	 682  	for n := b.N; n > 0; n-- {
	 683  		r.Read(buf)
	 684  	}
	 685  }
	 686  

View as plain text