...

Source file src/testing/quick/quick.go

Documentation: testing/quick

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  // Package quick implements utility functions to help with black box testing.
		 6  //
		 7  // The testing/quick package is frozen and is not accepting new features.
		 8  package quick
		 9  
		10  import (
		11  	"flag"
		12  	"fmt"
		13  	"math"
		14  	"math/rand"
		15  	"reflect"
		16  	"strings"
		17  	"time"
		18  )
		19  
		20  var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check")
		21  
		22  // A Generator can generate random values of its own type.
		23  type Generator interface {
		24  	// Generate returns a random instance of the type on which it is a
		25  	// method using the size as a size hint.
		26  	Generate(rand *rand.Rand, size int) reflect.Value
		27  }
		28  
		29  // randFloat32 generates a random float taking the full range of a float32.
		30  func randFloat32(rand *rand.Rand) float32 {
		31  	f := rand.Float64() * math.MaxFloat32
		32  	if rand.Int()&1 == 1 {
		33  		f = -f
		34  	}
		35  	return float32(f)
		36  }
		37  
		38  // randFloat64 generates a random float taking the full range of a float64.
		39  func randFloat64(rand *rand.Rand) float64 {
		40  	f := rand.Float64() * math.MaxFloat64
		41  	if rand.Int()&1 == 1 {
		42  		f = -f
		43  	}
		44  	return f
		45  }
		46  
		47  // randInt64 returns a random int64.
		48  func randInt64(rand *rand.Rand) int64 {
		49  	return int64(rand.Uint64())
		50  }
		51  
		52  // complexSize is the maximum length of arbitrary values that contain other
		53  // values.
		54  const complexSize = 50
		55  
		56  // Value returns an arbitrary value of the given type.
		57  // If the type implements the Generator interface, that will be used.
		58  // Note: To create arbitrary values for structs, all the fields must be exported.
		59  func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) {
		60  	return sizedValue(t, rand, complexSize)
		61  }
		62  
		63  // sizedValue returns an arbitrary value of the given type. The size
		64  // hint is used for shrinking as a function of indirection level so
		65  // that recursive data structures will terminate.
		66  func sizedValue(t reflect.Type, rand *rand.Rand, size int) (value reflect.Value, ok bool) {
		67  	if m, ok := reflect.Zero(t).Interface().(Generator); ok {
		68  		return m.Generate(rand, size), true
		69  	}
		70  
		71  	v := reflect.New(t).Elem()
		72  	switch concrete := t; concrete.Kind() {
		73  	case reflect.Bool:
		74  		v.SetBool(rand.Int()&1 == 0)
		75  	case reflect.Float32:
		76  		v.SetFloat(float64(randFloat32(rand)))
		77  	case reflect.Float64:
		78  		v.SetFloat(randFloat64(rand))
		79  	case reflect.Complex64:
		80  		v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand))))
		81  	case reflect.Complex128:
		82  		v.SetComplex(complex(randFloat64(rand), randFloat64(rand)))
		83  	case reflect.Int16:
		84  		v.SetInt(randInt64(rand))
		85  	case reflect.Int32:
		86  		v.SetInt(randInt64(rand))
		87  	case reflect.Int64:
		88  		v.SetInt(randInt64(rand))
		89  	case reflect.Int8:
		90  		v.SetInt(randInt64(rand))
		91  	case reflect.Int:
		92  		v.SetInt(randInt64(rand))
		93  	case reflect.Uint16:
		94  		v.SetUint(uint64(randInt64(rand)))
		95  	case reflect.Uint32:
		96  		v.SetUint(uint64(randInt64(rand)))
		97  	case reflect.Uint64:
		98  		v.SetUint(uint64(randInt64(rand)))
		99  	case reflect.Uint8:
	 100  		v.SetUint(uint64(randInt64(rand)))
	 101  	case reflect.Uint:
	 102  		v.SetUint(uint64(randInt64(rand)))
	 103  	case reflect.Uintptr:
	 104  		v.SetUint(uint64(randInt64(rand)))
	 105  	case reflect.Map:
	 106  		numElems := rand.Intn(size)
	 107  		v.Set(reflect.MakeMap(concrete))
	 108  		for i := 0; i < numElems; i++ {
	 109  			key, ok1 := sizedValue(concrete.Key(), rand, size)
	 110  			value, ok2 := sizedValue(concrete.Elem(), rand, size)
	 111  			if !ok1 || !ok2 {
	 112  				return reflect.Value{}, false
	 113  			}
	 114  			v.SetMapIndex(key, value)
	 115  		}
	 116  	case reflect.Ptr:
	 117  		if rand.Intn(size) == 0 {
	 118  			v.Set(reflect.Zero(concrete)) // Generate nil pointer.
	 119  		} else {
	 120  			elem, ok := sizedValue(concrete.Elem(), rand, size)
	 121  			if !ok {
	 122  				return reflect.Value{}, false
	 123  			}
	 124  			v.Set(reflect.New(concrete.Elem()))
	 125  			v.Elem().Set(elem)
	 126  		}
	 127  	case reflect.Slice:
	 128  		numElems := rand.Intn(size)
	 129  		sizeLeft := size - numElems
	 130  		v.Set(reflect.MakeSlice(concrete, numElems, numElems))
	 131  		for i := 0; i < numElems; i++ {
	 132  			elem, ok := sizedValue(concrete.Elem(), rand, sizeLeft)
	 133  			if !ok {
	 134  				return reflect.Value{}, false
	 135  			}
	 136  			v.Index(i).Set(elem)
	 137  		}
	 138  	case reflect.Array:
	 139  		for i := 0; i < v.Len(); i++ {
	 140  			elem, ok := sizedValue(concrete.Elem(), rand, size)
	 141  			if !ok {
	 142  				return reflect.Value{}, false
	 143  			}
	 144  			v.Index(i).Set(elem)
	 145  		}
	 146  	case reflect.String:
	 147  		numChars := rand.Intn(complexSize)
	 148  		codePoints := make([]rune, numChars)
	 149  		for i := 0; i < numChars; i++ {
	 150  			codePoints[i] = rune(rand.Intn(0x10ffff))
	 151  		}
	 152  		v.SetString(string(codePoints))
	 153  	case reflect.Struct:
	 154  		n := v.NumField()
	 155  		// Divide sizeLeft evenly among the struct fields.
	 156  		sizeLeft := size
	 157  		if n > sizeLeft {
	 158  			sizeLeft = 1
	 159  		} else if n > 0 {
	 160  			sizeLeft /= n
	 161  		}
	 162  		for i := 0; i < n; i++ {
	 163  			elem, ok := sizedValue(concrete.Field(i).Type, rand, sizeLeft)
	 164  			if !ok {
	 165  				return reflect.Value{}, false
	 166  			}
	 167  			v.Field(i).Set(elem)
	 168  		}
	 169  	default:
	 170  		return reflect.Value{}, false
	 171  	}
	 172  
	 173  	return v, true
	 174  }
	 175  
	 176  // A Config structure contains options for running a test.
	 177  type Config struct {
	 178  	// MaxCount sets the maximum number of iterations.
	 179  	// If zero, MaxCountScale is used.
	 180  	MaxCount int
	 181  	// MaxCountScale is a non-negative scale factor applied to the
	 182  	// default maximum.
	 183  	// A count of zero implies the default, which is usually 100
	 184  	// but can be set by the -quickchecks flag.
	 185  	MaxCountScale float64
	 186  	// Rand specifies a source of random numbers.
	 187  	// If nil, a default pseudo-random source will be used.
	 188  	Rand *rand.Rand
	 189  	// Values specifies a function to generate a slice of
	 190  	// arbitrary reflect.Values that are congruent with the
	 191  	// arguments to the function being tested.
	 192  	// If nil, the top-level Value function is used to generate them.
	 193  	Values func([]reflect.Value, *rand.Rand)
	 194  }
	 195  
	 196  var defaultConfig Config
	 197  
	 198  // getRand returns the *rand.Rand to use for a given Config.
	 199  func (c *Config) getRand() *rand.Rand {
	 200  	if c.Rand == nil {
	 201  		return rand.New(rand.NewSource(time.Now().UnixNano()))
	 202  	}
	 203  	return c.Rand
	 204  }
	 205  
	 206  // getMaxCount returns the maximum number of iterations to run for a given
	 207  // Config.
	 208  func (c *Config) getMaxCount() (maxCount int) {
	 209  	maxCount = c.MaxCount
	 210  	if maxCount == 0 {
	 211  		if c.MaxCountScale != 0 {
	 212  			maxCount = int(c.MaxCountScale * float64(*defaultMaxCount))
	 213  		} else {
	 214  			maxCount = *defaultMaxCount
	 215  		}
	 216  	}
	 217  
	 218  	return
	 219  }
	 220  
	 221  // A SetupError is the result of an error in the way that check is being
	 222  // used, independent of the functions being tested.
	 223  type SetupError string
	 224  
	 225  func (s SetupError) Error() string { return string(s) }
	 226  
	 227  // A CheckError is the result of Check finding an error.
	 228  type CheckError struct {
	 229  	Count int
	 230  	In		[]interface{}
	 231  }
	 232  
	 233  func (s *CheckError) Error() string {
	 234  	return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In))
	 235  }
	 236  
	 237  // A CheckEqualError is the result CheckEqual finding an error.
	 238  type CheckEqualError struct {
	 239  	CheckError
	 240  	Out1 []interface{}
	 241  	Out2 []interface{}
	 242  }
	 243  
	 244  func (s *CheckEqualError) Error() string {
	 245  	return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2))
	 246  }
	 247  
	 248  // Check looks for an input to f, any function that returns bool,
	 249  // such that f returns false. It calls f repeatedly, with arbitrary
	 250  // values for each argument. If f returns false on a given input,
	 251  // Check returns that input as a *CheckError.
	 252  // For example:
	 253  //
	 254  // 	func TestOddMultipleOfThree(t *testing.T) {
	 255  // 		f := func(x int) bool {
	 256  // 			y := OddMultipleOfThree(x)
	 257  // 			return y%2 == 1 && y%3 == 0
	 258  // 		}
	 259  // 		if err := quick.Check(f, nil); err != nil {
	 260  // 			t.Error(err)
	 261  // 		}
	 262  // 	}
	 263  func Check(f interface{}, config *Config) error {
	 264  	if config == nil {
	 265  		config = &defaultConfig
	 266  	}
	 267  
	 268  	fVal, fType, ok := functionAndType(f)
	 269  	if !ok {
	 270  		return SetupError("argument is not a function")
	 271  	}
	 272  
	 273  	if fType.NumOut() != 1 {
	 274  		return SetupError("function does not return one value")
	 275  	}
	 276  	if fType.Out(0).Kind() != reflect.Bool {
	 277  		return SetupError("function does not return a bool")
	 278  	}
	 279  
	 280  	arguments := make([]reflect.Value, fType.NumIn())
	 281  	rand := config.getRand()
	 282  	maxCount := config.getMaxCount()
	 283  
	 284  	for i := 0; i < maxCount; i++ {
	 285  		err := arbitraryValues(arguments, fType, config, rand)
	 286  		if err != nil {
	 287  			return err
	 288  		}
	 289  
	 290  		if !fVal.Call(arguments)[0].Bool() {
	 291  			return &CheckError{i + 1, toInterfaces(arguments)}
	 292  		}
	 293  	}
	 294  
	 295  	return nil
	 296  }
	 297  
	 298  // CheckEqual looks for an input on which f and g return different results.
	 299  // It calls f and g repeatedly with arbitrary values for each argument.
	 300  // If f and g return different answers, CheckEqual returns a *CheckEqualError
	 301  // describing the input and the outputs.
	 302  func CheckEqual(f, g interface{}, config *Config) error {
	 303  	if config == nil {
	 304  		config = &defaultConfig
	 305  	}
	 306  
	 307  	x, xType, ok := functionAndType(f)
	 308  	if !ok {
	 309  		return SetupError("f is not a function")
	 310  	}
	 311  	y, yType, ok := functionAndType(g)
	 312  	if !ok {
	 313  		return SetupError("g is not a function")
	 314  	}
	 315  
	 316  	if xType != yType {
	 317  		return SetupError("functions have different types")
	 318  	}
	 319  
	 320  	arguments := make([]reflect.Value, xType.NumIn())
	 321  	rand := config.getRand()
	 322  	maxCount := config.getMaxCount()
	 323  
	 324  	for i := 0; i < maxCount; i++ {
	 325  		err := arbitraryValues(arguments, xType, config, rand)
	 326  		if err != nil {
	 327  			return err
	 328  		}
	 329  
	 330  		xOut := toInterfaces(x.Call(arguments))
	 331  		yOut := toInterfaces(y.Call(arguments))
	 332  
	 333  		if !reflect.DeepEqual(xOut, yOut) {
	 334  			return &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut}
	 335  		}
	 336  	}
	 337  
	 338  	return nil
	 339  }
	 340  
	 341  // arbitraryValues writes Values to args such that args contains Values
	 342  // suitable for calling f.
	 343  func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) {
	 344  	if config.Values != nil {
	 345  		config.Values(args, rand)
	 346  		return
	 347  	}
	 348  
	 349  	for j := 0; j < len(args); j++ {
	 350  		var ok bool
	 351  		args[j], ok = Value(f.In(j), rand)
	 352  		if !ok {
	 353  			err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j))
	 354  			return
	 355  		}
	 356  	}
	 357  
	 358  	return
	 359  }
	 360  
	 361  func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) {
	 362  	v = reflect.ValueOf(f)
	 363  	ok = v.Kind() == reflect.Func
	 364  	if !ok {
	 365  		return
	 366  	}
	 367  	t = v.Type()
	 368  	return
	 369  }
	 370  
	 371  func toInterfaces(values []reflect.Value) []interface{} {
	 372  	ret := make([]interface{}, len(values))
	 373  	for i, v := range values {
	 374  		ret[i] = v.Interface()
	 375  	}
	 376  	return ret
	 377  }
	 378  
	 379  func toString(interfaces []interface{}) string {
	 380  	s := make([]string, len(interfaces))
	 381  	for i, v := range interfaces {
	 382  		s[i] = fmt.Sprintf("%#v", v)
	 383  	}
	 384  	return strings.Join(s, ", ")
	 385  }
	 386  

View as plain text