...

Source file src/text/template/funcs.go

Documentation: text/template

		 1  // Copyright 2011 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  package template
		 6  
		 7  import (
		 8  	"bytes"
		 9  	"errors"
		10  	"fmt"
		11  	"io"
		12  	"net/url"
		13  	"reflect"
		14  	"strings"
		15  	"sync"
		16  	"unicode"
		17  	"unicode/utf8"
		18  )
		19  
		20  // FuncMap is the type of the map defining the mapping from names to functions.
		21  // Each function must have either a single return value, or two return values of
		22  // which the second has type error. In that case, if the second (error)
		23  // return value evaluates to non-nil during execution, execution terminates and
		24  // Execute returns that error.
		25  //
		26  // Errors returned by Execute wrap the underlying error; call errors.As to
		27  // uncover them.
		28  //
		29  // When template execution invokes a function with an argument list, that list
		30  // must be assignable to the function's parameter types. Functions meant to
		31  // apply to arguments of arbitrary type can use parameters of type interface{} or
		32  // of type reflect.Value. Similarly, functions meant to return a result of arbitrary
		33  // type can return interface{} or reflect.Value.
		34  type FuncMap map[string]interface{}
		35  
		36  // builtins returns the FuncMap.
		37  // It is not a global variable so the linker can dead code eliminate
		38  // more when this isn't called. See golang.org/issue/36021.
		39  // TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
		40  func builtins() FuncMap {
		41  	return FuncMap{
		42  		"and":			and,
		43  		"call":		 call,
		44  		"html":		 HTMLEscaper,
		45  		"index":		index,
		46  		"slice":		slice,
		47  		"js":			 JSEscaper,
		48  		"len":			length,
		49  		"not":			not,
		50  		"or":			 or,
		51  		"print":		fmt.Sprint,
		52  		"printf":	 fmt.Sprintf,
		53  		"println":	fmt.Sprintln,
		54  		"urlquery": URLQueryEscaper,
		55  
		56  		// Comparisons
		57  		"eq": eq, // ==
		58  		"ge": ge, // >=
		59  		"gt": gt, // >
		60  		"le": le, // <=
		61  		"lt": lt, // <
		62  		"ne": ne, // !=
		63  	}
		64  }
		65  
		66  var builtinFuncsOnce struct {
		67  	sync.Once
		68  	v map[string]reflect.Value
		69  }
		70  
		71  // builtinFuncsOnce lazily computes & caches the builtinFuncs map.
		72  // TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
		73  func builtinFuncs() map[string]reflect.Value {
		74  	builtinFuncsOnce.Do(func() {
		75  		builtinFuncsOnce.v = createValueFuncs(builtins())
		76  	})
		77  	return builtinFuncsOnce.v
		78  }
		79  
		80  // createValueFuncs turns a FuncMap into a map[string]reflect.Value
		81  func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
		82  	m := make(map[string]reflect.Value)
		83  	addValueFuncs(m, funcMap)
		84  	return m
		85  }
		86  
		87  // addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
		88  func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
		89  	for name, fn := range in {
		90  		if !goodName(name) {
		91  			panic(fmt.Errorf("function name %q is not a valid identifier", name))
		92  		}
		93  		v := reflect.ValueOf(fn)
		94  		if v.Kind() != reflect.Func {
		95  			panic("value for " + name + " not a function")
		96  		}
		97  		if !goodFunc(v.Type()) {
		98  			panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut()))
		99  		}
	 100  		out[name] = v
	 101  	}
	 102  }
	 103  
	 104  // addFuncs adds to values the functions in funcs. It does no checking of the input -
	 105  // call addValueFuncs first.
	 106  func addFuncs(out, in FuncMap) {
	 107  	for name, fn := range in {
	 108  		out[name] = fn
	 109  	}
	 110  }
	 111  
	 112  // goodFunc reports whether the function or method has the right result signature.
	 113  func goodFunc(typ reflect.Type) bool {
	 114  	// We allow functions with 1 result or 2 results where the second is an error.
	 115  	switch {
	 116  	case typ.NumOut() == 1:
	 117  		return true
	 118  	case typ.NumOut() == 2 && typ.Out(1) == errorType:
	 119  		return true
	 120  	}
	 121  	return false
	 122  }
	 123  
	 124  // goodName reports whether the function name is a valid identifier.
	 125  func goodName(name string) bool {
	 126  	if name == "" {
	 127  		return false
	 128  	}
	 129  	for i, r := range name {
	 130  		switch {
	 131  		case r == '_':
	 132  		case i == 0 && !unicode.IsLetter(r):
	 133  			return false
	 134  		case !unicode.IsLetter(r) && !unicode.IsDigit(r):
	 135  			return false
	 136  		}
	 137  	}
	 138  	return true
	 139  }
	 140  
	 141  // findFunction looks for a function in the template, and global map.
	 142  func findFunction(name string, tmpl *Template) (reflect.Value, bool) {
	 143  	if tmpl != nil && tmpl.common != nil {
	 144  		tmpl.muFuncs.RLock()
	 145  		defer tmpl.muFuncs.RUnlock()
	 146  		if fn := tmpl.execFuncs[name]; fn.IsValid() {
	 147  			return fn, true
	 148  		}
	 149  	}
	 150  	if fn := builtinFuncs()[name]; fn.IsValid() {
	 151  		return fn, true
	 152  	}
	 153  	return reflect.Value{}, false
	 154  }
	 155  
	 156  // prepareArg checks if value can be used as an argument of type argType, and
	 157  // converts an invalid value to appropriate zero if possible.
	 158  func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
	 159  	if !value.IsValid() {
	 160  		if !canBeNil(argType) {
	 161  			return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
	 162  		}
	 163  		value = reflect.Zero(argType)
	 164  	}
	 165  	if value.Type().AssignableTo(argType) {
	 166  		return value, nil
	 167  	}
	 168  	if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
	 169  		value = value.Convert(argType)
	 170  		return value, nil
	 171  	}
	 172  	return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
	 173  }
	 174  
	 175  func intLike(typ reflect.Kind) bool {
	 176  	switch typ {
	 177  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
	 178  		return true
	 179  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
	 180  		return true
	 181  	}
	 182  	return false
	 183  }
	 184  
	 185  // indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible.
	 186  func indexArg(index reflect.Value, cap int) (int, error) {
	 187  	var x int64
	 188  	switch index.Kind() {
	 189  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
	 190  		x = index.Int()
	 191  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
	 192  		x = int64(index.Uint())
	 193  	case reflect.Invalid:
	 194  		return 0, fmt.Errorf("cannot index slice/array with nil")
	 195  	default:
	 196  		return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type())
	 197  	}
	 198  	if x < 0 || int(x) < 0 || int(x) > cap {
	 199  		return 0, fmt.Errorf("index out of range: %d", x)
	 200  	}
	 201  	return int(x), nil
	 202  }
	 203  
	 204  // Indexing.
	 205  
	 206  // index returns the result of indexing its first argument by the following
	 207  // arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
	 208  // indexed item must be a map, slice, or array.
	 209  func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
	 210  	item = indirectInterface(item)
	 211  	if !item.IsValid() {
	 212  		return reflect.Value{}, fmt.Errorf("index of untyped nil")
	 213  	}
	 214  	for _, index := range indexes {
	 215  		index = indirectInterface(index)
	 216  		var isNil bool
	 217  		if item, isNil = indirect(item); isNil {
	 218  			return reflect.Value{}, fmt.Errorf("index of nil pointer")
	 219  		}
	 220  		switch item.Kind() {
	 221  		case reflect.Array, reflect.Slice, reflect.String:
	 222  			x, err := indexArg(index, item.Len())
	 223  			if err != nil {
	 224  				return reflect.Value{}, err
	 225  			}
	 226  			item = item.Index(x)
	 227  		case reflect.Map:
	 228  			index, err := prepareArg(index, item.Type().Key())
	 229  			if err != nil {
	 230  				return reflect.Value{}, err
	 231  			}
	 232  			if x := item.MapIndex(index); x.IsValid() {
	 233  				item = x
	 234  			} else {
	 235  				item = reflect.Zero(item.Type().Elem())
	 236  			}
	 237  		case reflect.Invalid:
	 238  			// the loop holds invariant: item.IsValid()
	 239  			panic("unreachable")
	 240  		default:
	 241  			return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type())
	 242  		}
	 243  	}
	 244  	return item, nil
	 245  }
	 246  
	 247  // Slicing.
	 248  
	 249  // slice returns the result of slicing its first argument by the remaining
	 250  // arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x"
	 251  // is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first
	 252  // argument must be a string, slice, or array.
	 253  func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
	 254  	item = indirectInterface(item)
	 255  	if !item.IsValid() {
	 256  		return reflect.Value{}, fmt.Errorf("slice of untyped nil")
	 257  	}
	 258  	if len(indexes) > 3 {
	 259  		return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes))
	 260  	}
	 261  	var cap int
	 262  	switch item.Kind() {
	 263  	case reflect.String:
	 264  		if len(indexes) == 3 {
	 265  			return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string")
	 266  		}
	 267  		cap = item.Len()
	 268  	case reflect.Array, reflect.Slice:
	 269  		cap = item.Cap()
	 270  	default:
	 271  		return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type())
	 272  	}
	 273  	// set default values for cases item[:], item[i:].
	 274  	idx := [3]int{0, item.Len()}
	 275  	for i, index := range indexes {
	 276  		x, err := indexArg(index, cap)
	 277  		if err != nil {
	 278  			return reflect.Value{}, err
	 279  		}
	 280  		idx[i] = x
	 281  	}
	 282  	// given item[i:j], make sure i <= j.
	 283  	if idx[0] > idx[1] {
	 284  		return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1])
	 285  	}
	 286  	if len(indexes) < 3 {
	 287  		return item.Slice(idx[0], idx[1]), nil
	 288  	}
	 289  	// given item[i:j:k], make sure i <= j <= k.
	 290  	if idx[1] > idx[2] {
	 291  		return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2])
	 292  	}
	 293  	return item.Slice3(idx[0], idx[1], idx[2]), nil
	 294  }
	 295  
	 296  // Length
	 297  
	 298  // length returns the length of the item, with an error if it has no defined length.
	 299  func length(item reflect.Value) (int, error) {
	 300  	item, isNil := indirect(item)
	 301  	if isNil {
	 302  		return 0, fmt.Errorf("len of nil pointer")
	 303  	}
	 304  	switch item.Kind() {
	 305  	case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
	 306  		return item.Len(), nil
	 307  	}
	 308  	return 0, fmt.Errorf("len of type %s", item.Type())
	 309  }
	 310  
	 311  // Function invocation
	 312  
	 313  // call returns the result of evaluating the first argument as a function.
	 314  // The function must return 1 result, or 2 results, the second of which is an error.
	 315  func call(fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
	 316  	fn = indirectInterface(fn)
	 317  	if !fn.IsValid() {
	 318  		return reflect.Value{}, fmt.Errorf("call of nil")
	 319  	}
	 320  	typ := fn.Type()
	 321  	if typ.Kind() != reflect.Func {
	 322  		return reflect.Value{}, fmt.Errorf("non-function of type %s", typ)
	 323  	}
	 324  	if !goodFunc(typ) {
	 325  		return reflect.Value{}, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut())
	 326  	}
	 327  	numIn := typ.NumIn()
	 328  	var dddType reflect.Type
	 329  	if typ.IsVariadic() {
	 330  		if len(args) < numIn-1 {
	 331  			return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1)
	 332  		}
	 333  		dddType = typ.In(numIn - 1).Elem()
	 334  	} else {
	 335  		if len(args) != numIn {
	 336  			return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn)
	 337  		}
	 338  	}
	 339  	argv := make([]reflect.Value, len(args))
	 340  	for i, arg := range args {
	 341  		arg = indirectInterface(arg)
	 342  		// Compute the expected type. Clumsy because of variadics.
	 343  		argType := dddType
	 344  		if !typ.IsVariadic() || i < numIn-1 {
	 345  			argType = typ.In(i)
	 346  		}
	 347  
	 348  		var err error
	 349  		if argv[i], err = prepareArg(arg, argType); err != nil {
	 350  			return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err)
	 351  		}
	 352  	}
	 353  	return safeCall(fn, argv)
	 354  }
	 355  
	 356  // safeCall runs fun.Call(args), and returns the resulting value and error, if
	 357  // any. If the call panics, the panic value is returned as an error.
	 358  func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) {
	 359  	defer func() {
	 360  		if r := recover(); r != nil {
	 361  			if e, ok := r.(error); ok {
	 362  				err = e
	 363  			} else {
	 364  				err = fmt.Errorf("%v", r)
	 365  			}
	 366  		}
	 367  	}()
	 368  	ret := fun.Call(args)
	 369  	if len(ret) == 2 && !ret[1].IsNil() {
	 370  		return ret[0], ret[1].Interface().(error)
	 371  	}
	 372  	return ret[0], nil
	 373  }
	 374  
	 375  // Boolean logic.
	 376  
	 377  func truth(arg reflect.Value) bool {
	 378  	t, _ := isTrue(indirectInterface(arg))
	 379  	return t
	 380  }
	 381  
	 382  // and computes the Boolean AND of its arguments, returning
	 383  // the first false argument it encounters, or the last argument.
	 384  func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
	 385  	if !truth(arg0) {
	 386  		return arg0
	 387  	}
	 388  	for i := range args {
	 389  		arg0 = args[i]
	 390  		if !truth(arg0) {
	 391  			break
	 392  		}
	 393  	}
	 394  	return arg0
	 395  }
	 396  
	 397  // or computes the Boolean OR of its arguments, returning
	 398  // the first true argument it encounters, or the last argument.
	 399  func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
	 400  	if truth(arg0) {
	 401  		return arg0
	 402  	}
	 403  	for i := range args {
	 404  		arg0 = args[i]
	 405  		if truth(arg0) {
	 406  			break
	 407  		}
	 408  	}
	 409  	return arg0
	 410  }
	 411  
	 412  // not returns the Boolean negation of its argument.
	 413  func not(arg reflect.Value) bool {
	 414  	return !truth(arg)
	 415  }
	 416  
	 417  // Comparison.
	 418  
	 419  // TODO: Perhaps allow comparison between signed and unsigned integers.
	 420  
	 421  var (
	 422  	errBadComparisonType = errors.New("invalid type for comparison")
	 423  	errBadComparison		 = errors.New("incompatible types for comparison")
	 424  	errNoComparison			= errors.New("missing argument for comparison")
	 425  )
	 426  
	 427  type kind int
	 428  
	 429  const (
	 430  	invalidKind kind = iota
	 431  	boolKind
	 432  	complexKind
	 433  	intKind
	 434  	floatKind
	 435  	stringKind
	 436  	uintKind
	 437  )
	 438  
	 439  func basicKind(v reflect.Value) (kind, error) {
	 440  	switch v.Kind() {
	 441  	case reflect.Bool:
	 442  		return boolKind, nil
	 443  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
	 444  		return intKind, nil
	 445  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
	 446  		return uintKind, nil
	 447  	case reflect.Float32, reflect.Float64:
	 448  		return floatKind, nil
	 449  	case reflect.Complex64, reflect.Complex128:
	 450  		return complexKind, nil
	 451  	case reflect.String:
	 452  		return stringKind, nil
	 453  	}
	 454  	return invalidKind, errBadComparisonType
	 455  }
	 456  
	 457  // eq evaluates the comparison a == b || a == c || ...
	 458  func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
	 459  	arg1 = indirectInterface(arg1)
	 460  	if arg1 != zero {
	 461  		if t1 := arg1.Type(); !t1.Comparable() {
	 462  			return false, fmt.Errorf("uncomparable type %s: %v", t1, arg1)
	 463  		}
	 464  	}
	 465  	if len(arg2) == 0 {
	 466  		return false, errNoComparison
	 467  	}
	 468  	k1, _ := basicKind(arg1)
	 469  	for _, arg := range arg2 {
	 470  		arg = indirectInterface(arg)
	 471  		k2, _ := basicKind(arg)
	 472  		truth := false
	 473  		if k1 != k2 {
	 474  			// Special case: Can compare integer values regardless of type's sign.
	 475  			switch {
	 476  			case k1 == intKind && k2 == uintKind:
	 477  				truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint()
	 478  			case k1 == uintKind && k2 == intKind:
	 479  				truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int())
	 480  			default:
	 481  				if arg1 != zero && arg != zero {
	 482  					return false, errBadComparison
	 483  				}
	 484  			}
	 485  		} else {
	 486  			switch k1 {
	 487  			case boolKind:
	 488  				truth = arg1.Bool() == arg.Bool()
	 489  			case complexKind:
	 490  				truth = arg1.Complex() == arg.Complex()
	 491  			case floatKind:
	 492  				truth = arg1.Float() == arg.Float()
	 493  			case intKind:
	 494  				truth = arg1.Int() == arg.Int()
	 495  			case stringKind:
	 496  				truth = arg1.String() == arg.String()
	 497  			case uintKind:
	 498  				truth = arg1.Uint() == arg.Uint()
	 499  			default:
	 500  				if arg == zero || arg1 == zero {
	 501  					truth = arg1 == arg
	 502  				} else {
	 503  					if t2 := arg.Type(); !t2.Comparable() {
	 504  						return false, fmt.Errorf("uncomparable type %s: %v", t2, arg)
	 505  					}
	 506  					truth = arg1.Interface() == arg.Interface()
	 507  				}
	 508  			}
	 509  		}
	 510  		if truth {
	 511  			return true, nil
	 512  		}
	 513  	}
	 514  	return false, nil
	 515  }
	 516  
	 517  // ne evaluates the comparison a != b.
	 518  func ne(arg1, arg2 reflect.Value) (bool, error) {
	 519  	// != is the inverse of ==.
	 520  	equal, err := eq(arg1, arg2)
	 521  	return !equal, err
	 522  }
	 523  
	 524  // lt evaluates the comparison a < b.
	 525  func lt(arg1, arg2 reflect.Value) (bool, error) {
	 526  	arg1 = indirectInterface(arg1)
	 527  	k1, err := basicKind(arg1)
	 528  	if err != nil {
	 529  		return false, err
	 530  	}
	 531  	arg2 = indirectInterface(arg2)
	 532  	k2, err := basicKind(arg2)
	 533  	if err != nil {
	 534  		return false, err
	 535  	}
	 536  	truth := false
	 537  	if k1 != k2 {
	 538  		// Special case: Can compare integer values regardless of type's sign.
	 539  		switch {
	 540  		case k1 == intKind && k2 == uintKind:
	 541  			truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint()
	 542  		case k1 == uintKind && k2 == intKind:
	 543  			truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int())
	 544  		default:
	 545  			return false, errBadComparison
	 546  		}
	 547  	} else {
	 548  		switch k1 {
	 549  		case boolKind, complexKind:
	 550  			return false, errBadComparisonType
	 551  		case floatKind:
	 552  			truth = arg1.Float() < arg2.Float()
	 553  		case intKind:
	 554  			truth = arg1.Int() < arg2.Int()
	 555  		case stringKind:
	 556  			truth = arg1.String() < arg2.String()
	 557  		case uintKind:
	 558  			truth = arg1.Uint() < arg2.Uint()
	 559  		default:
	 560  			panic("invalid kind")
	 561  		}
	 562  	}
	 563  	return truth, nil
	 564  }
	 565  
	 566  // le evaluates the comparison <= b.
	 567  func le(arg1, arg2 reflect.Value) (bool, error) {
	 568  	// <= is < or ==.
	 569  	lessThan, err := lt(arg1, arg2)
	 570  	if lessThan || err != nil {
	 571  		return lessThan, err
	 572  	}
	 573  	return eq(arg1, arg2)
	 574  }
	 575  
	 576  // gt evaluates the comparison a > b.
	 577  func gt(arg1, arg2 reflect.Value) (bool, error) {
	 578  	// > is the inverse of <=.
	 579  	lessOrEqual, err := le(arg1, arg2)
	 580  	if err != nil {
	 581  		return false, err
	 582  	}
	 583  	return !lessOrEqual, nil
	 584  }
	 585  
	 586  // ge evaluates the comparison a >= b.
	 587  func ge(arg1, arg2 reflect.Value) (bool, error) {
	 588  	// >= is the inverse of <.
	 589  	lessThan, err := lt(arg1, arg2)
	 590  	if err != nil {
	 591  		return false, err
	 592  	}
	 593  	return !lessThan, nil
	 594  }
	 595  
	 596  // HTML escaping.
	 597  
	 598  var (
	 599  	htmlQuot = []byte("&#34;") // shorter than "&quot;"
	 600  	htmlApos = []byte("&#39;") // shorter than "&apos;" and apos was not in HTML until HTML5
	 601  	htmlAmp	= []byte("&amp;")
	 602  	htmlLt	 = []byte("&lt;")
	 603  	htmlGt	 = []byte("&gt;")
	 604  	htmlNull = []byte("\uFFFD")
	 605  )
	 606  
	 607  // HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
	 608  func HTMLEscape(w io.Writer, b []byte) {
	 609  	last := 0
	 610  	for i, c := range b {
	 611  		var html []byte
	 612  		switch c {
	 613  		case '\000':
	 614  			html = htmlNull
	 615  		case '"':
	 616  			html = htmlQuot
	 617  		case '\'':
	 618  			html = htmlApos
	 619  		case '&':
	 620  			html = htmlAmp
	 621  		case '<':
	 622  			html = htmlLt
	 623  		case '>':
	 624  			html = htmlGt
	 625  		default:
	 626  			continue
	 627  		}
	 628  		w.Write(b[last:i])
	 629  		w.Write(html)
	 630  		last = i + 1
	 631  	}
	 632  	w.Write(b[last:])
	 633  }
	 634  
	 635  // HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
	 636  func HTMLEscapeString(s string) string {
	 637  	// Avoid allocation if we can.
	 638  	if !strings.ContainsAny(s, "'\"&<>\000") {
	 639  		return s
	 640  	}
	 641  	var b bytes.Buffer
	 642  	HTMLEscape(&b, []byte(s))
	 643  	return b.String()
	 644  }
	 645  
	 646  // HTMLEscaper returns the escaped HTML equivalent of the textual
	 647  // representation of its arguments.
	 648  func HTMLEscaper(args ...interface{}) string {
	 649  	return HTMLEscapeString(evalArgs(args))
	 650  }
	 651  
	 652  // JavaScript escaping.
	 653  
	 654  var (
	 655  	jsLowUni = []byte(`\u00`)
	 656  	hex			= []byte("0123456789ABCDEF")
	 657  
	 658  	jsBackslash = []byte(`\\`)
	 659  	jsApos			= []byte(`\'`)
	 660  	jsQuot			= []byte(`\"`)
	 661  	jsLt				= []byte(`\u003C`)
	 662  	jsGt				= []byte(`\u003E`)
	 663  	jsAmp			 = []byte(`\u0026`)
	 664  	jsEq				= []byte(`\u003D`)
	 665  )
	 666  
	 667  // JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
	 668  func JSEscape(w io.Writer, b []byte) {
	 669  	last := 0
	 670  	for i := 0; i < len(b); i++ {
	 671  		c := b[i]
	 672  
	 673  		if !jsIsSpecial(rune(c)) {
	 674  			// fast path: nothing to do
	 675  			continue
	 676  		}
	 677  		w.Write(b[last:i])
	 678  
	 679  		if c < utf8.RuneSelf {
	 680  			// Quotes, slashes and angle brackets get quoted.
	 681  			// Control characters get written as \u00XX.
	 682  			switch c {
	 683  			case '\\':
	 684  				w.Write(jsBackslash)
	 685  			case '\'':
	 686  				w.Write(jsApos)
	 687  			case '"':
	 688  				w.Write(jsQuot)
	 689  			case '<':
	 690  				w.Write(jsLt)
	 691  			case '>':
	 692  				w.Write(jsGt)
	 693  			case '&':
	 694  				w.Write(jsAmp)
	 695  			case '=':
	 696  				w.Write(jsEq)
	 697  			default:
	 698  				w.Write(jsLowUni)
	 699  				t, b := c>>4, c&0x0f
	 700  				w.Write(hex[t : t+1])
	 701  				w.Write(hex[b : b+1])
	 702  			}
	 703  		} else {
	 704  			// Unicode rune.
	 705  			r, size := utf8.DecodeRune(b[i:])
	 706  			if unicode.IsPrint(r) {
	 707  				w.Write(b[i : i+size])
	 708  			} else {
	 709  				fmt.Fprintf(w, "\\u%04X", r)
	 710  			}
	 711  			i += size - 1
	 712  		}
	 713  		last = i + 1
	 714  	}
	 715  	w.Write(b[last:])
	 716  }
	 717  
	 718  // JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
	 719  func JSEscapeString(s string) string {
	 720  	// Avoid allocation if we can.
	 721  	if strings.IndexFunc(s, jsIsSpecial) < 0 {
	 722  		return s
	 723  	}
	 724  	var b bytes.Buffer
	 725  	JSEscape(&b, []byte(s))
	 726  	return b.String()
	 727  }
	 728  
	 729  func jsIsSpecial(r rune) bool {
	 730  	switch r {
	 731  	case '\\', '\'', '"', '<', '>', '&', '=':
	 732  		return true
	 733  	}
	 734  	return r < ' ' || utf8.RuneSelf <= r
	 735  }
	 736  
	 737  // JSEscaper returns the escaped JavaScript equivalent of the textual
	 738  // representation of its arguments.
	 739  func JSEscaper(args ...interface{}) string {
	 740  	return JSEscapeString(evalArgs(args))
	 741  }
	 742  
	 743  // URLQueryEscaper returns the escaped value of the textual representation of
	 744  // its arguments in a form suitable for embedding in a URL query.
	 745  func URLQueryEscaper(args ...interface{}) string {
	 746  	return url.QueryEscape(evalArgs(args))
	 747  }
	 748  
	 749  // evalArgs formats the list of arguments into a string. It is therefore equivalent to
	 750  //	fmt.Sprint(args...)
	 751  // except that each argument is indirected (if a pointer), as required,
	 752  // using the same rules as the default string evaluation during template
	 753  // execution.
	 754  func evalArgs(args []interface{}) string {
	 755  	ok := false
	 756  	var s string
	 757  	// Fast path for simple common case.
	 758  	if len(args) == 1 {
	 759  		s, ok = args[0].(string)
	 760  	}
	 761  	if !ok {
	 762  		for i, arg := range args {
	 763  			a, ok := printableValue(reflect.ValueOf(arg))
	 764  			if ok {
	 765  				args[i] = a
	 766  			} // else let fmt do its thing
	 767  		}
	 768  		s = fmt.Sprint(args...)
	 769  	}
	 770  	return s
	 771  }
	 772  

View as plain text