...

Source file src/unsafe/unsafe.go

Documentation: unsafe

		 1  // Copyright 2009 The Go Authors. All rights reserved.
		 2  // Use of this source code is governed by a BSD-style
		 3  // license that can be found in the LICENSE file.
		 4  
		 5  /*
		 6  	Package unsafe contains operations that step around the type safety of Go programs.
		 7  
		 8  	Packages that import unsafe may be non-portable and are not protected by the
		 9  	Go 1 compatibility guidelines.
		10  */
		11  package unsafe
		12  
		13  // ArbitraryType is here for the purposes of documentation only and is not actually
		14  // part of the unsafe package. It represents the type of an arbitrary Go expression.
		15  type ArbitraryType int
		16  
		17  // IntegerType is here for the purposes of documentation only and is not actually
		18  // part of the unsafe package. It represents any arbitrary integer type.
		19  type IntegerType int
		20  
		21  // Pointer represents a pointer to an arbitrary type. There are four special operations
		22  // available for type Pointer that are not available for other types:
		23  //	- A pointer value of any type can be converted to a Pointer.
		24  //	- A Pointer can be converted to a pointer value of any type.
		25  //	- A uintptr can be converted to a Pointer.
		26  //	- A Pointer can be converted to a uintptr.
		27  // Pointer therefore allows a program to defeat the type system and read and write
		28  // arbitrary memory. It should be used with extreme care.
		29  //
		30  // The following patterns involving Pointer are valid.
		31  // Code not using these patterns is likely to be invalid today
		32  // or to become invalid in the future.
		33  // Even the valid patterns below come with important caveats.
		34  //
		35  // Running "go vet" can help find uses of Pointer that do not conform to these patterns,
		36  // but silence from "go vet" is not a guarantee that the code is valid.
		37  //
		38  // (1) Conversion of a *T1 to Pointer to *T2.
		39  //
		40  // Provided that T2 is no larger than T1 and that the two share an equivalent
		41  // memory layout, this conversion allows reinterpreting data of one type as
		42  // data of another type. An example is the implementation of
		43  // math.Float64bits:
		44  //
		45  //	func Float64bits(f float64) uint64 {
		46  //		return *(*uint64)(unsafe.Pointer(&f))
		47  //	}
		48  //
		49  // (2) Conversion of a Pointer to a uintptr (but not back to Pointer).
		50  //
		51  // Converting a Pointer to a uintptr produces the memory address of the value
		52  // pointed at, as an integer. The usual use for such a uintptr is to print it.
		53  //
		54  // Conversion of a uintptr back to Pointer is not valid in general.
		55  //
		56  // A uintptr is an integer, not a reference.
		57  // Converting a Pointer to a uintptr creates an integer value
		58  // with no pointer semantics.
		59  // Even if a uintptr holds the address of some object,
		60  // the garbage collector will not update that uintptr's value
		61  // if the object moves, nor will that uintptr keep the object
		62  // from being reclaimed.
		63  //
		64  // The remaining patterns enumerate the only valid conversions
		65  // from uintptr to Pointer.
		66  //
		67  // (3) Conversion of a Pointer to a uintptr and back, with arithmetic.
		68  //
		69  // If p points into an allocated object, it can be advanced through the object
		70  // by conversion to uintptr, addition of an offset, and conversion back to Pointer.
		71  //
		72  //	p = unsafe.Pointer(uintptr(p) + offset)
		73  //
		74  // The most common use of this pattern is to access fields in a struct
		75  // or elements of an array:
		76  //
		77  //	// equivalent to f := unsafe.Pointer(&s.f)
		78  //	f := unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f))
		79  //
		80  //	// equivalent to e := unsafe.Pointer(&x[i])
		81  //	e := unsafe.Pointer(uintptr(unsafe.Pointer(&x[0])) + i*unsafe.Sizeof(x[0]))
		82  //
		83  // It is valid both to add and to subtract offsets from a pointer in this way.
		84  // It is also valid to use &^ to round pointers, usually for alignment.
		85  // In all cases, the result must continue to point into the original allocated object.
		86  //
		87  // Unlike in C, it is not valid to advance a pointer just beyond the end of
		88  // its original allocation:
		89  //
		90  //	// INVALID: end points outside allocated space.
		91  //	var s thing
		92  //	end = unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Sizeof(s))
		93  //
		94  //	// INVALID: end points outside allocated space.
		95  //	b := make([]byte, n)
		96  //	end = unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n))
		97  //
		98  // Note that both conversions must appear in the same expression, with only
		99  // the intervening arithmetic between them:
	 100  //
	 101  //	// INVALID: uintptr cannot be stored in variable
	 102  //	// before conversion back to Pointer.
	 103  //	u := uintptr(p)
	 104  //	p = unsafe.Pointer(u + offset)
	 105  //
	 106  // Note that the pointer must point into an allocated object, so it may not be nil.
	 107  //
	 108  //	// INVALID: conversion of nil pointer
	 109  //	u := unsafe.Pointer(nil)
	 110  //	p := unsafe.Pointer(uintptr(u) + offset)
	 111  //
	 112  // (4) Conversion of a Pointer to a uintptr when calling syscall.Syscall.
	 113  //
	 114  // The Syscall functions in package syscall pass their uintptr arguments directly
	 115  // to the operating system, which then may, depending on the details of the call,
	 116  // reinterpret some of them as pointers.
	 117  // That is, the system call implementation is implicitly converting certain arguments
	 118  // back from uintptr to pointer.
	 119  //
	 120  // If a pointer argument must be converted to uintptr for use as an argument,
	 121  // that conversion must appear in the call expression itself:
	 122  //
	 123  //	syscall.Syscall(SYS_READ, uintptr(fd), uintptr(unsafe.Pointer(p)), uintptr(n))
	 124  //
	 125  // The compiler handles a Pointer converted to a uintptr in the argument list of
	 126  // a call to a function implemented in assembly by arranging that the referenced
	 127  // allocated object, if any, is retained and not moved until the call completes,
	 128  // even though from the types alone it would appear that the object is no longer
	 129  // needed during the call.
	 130  //
	 131  // For the compiler to recognize this pattern,
	 132  // the conversion must appear in the argument list:
	 133  //
	 134  //	// INVALID: uintptr cannot be stored in variable
	 135  //	// before implicit conversion back to Pointer during system call.
	 136  //	u := uintptr(unsafe.Pointer(p))
	 137  //	syscall.Syscall(SYS_READ, uintptr(fd), u, uintptr(n))
	 138  //
	 139  // (5) Conversion of the result of reflect.Value.Pointer or reflect.Value.UnsafeAddr
	 140  // from uintptr to Pointer.
	 141  //
	 142  // Package reflect's Value methods named Pointer and UnsafeAddr return type uintptr
	 143  // instead of unsafe.Pointer to keep callers from changing the result to an arbitrary
	 144  // type without first importing "unsafe". However, this means that the result is
	 145  // fragile and must be converted to Pointer immediately after making the call,
	 146  // in the same expression:
	 147  //
	 148  //	p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))
	 149  //
	 150  // As in the cases above, it is invalid to store the result before the conversion:
	 151  //
	 152  //	// INVALID: uintptr cannot be stored in variable
	 153  //	// before conversion back to Pointer.
	 154  //	u := reflect.ValueOf(new(int)).Pointer()
	 155  //	p := (*int)(unsafe.Pointer(u))
	 156  //
	 157  // (6) Conversion of a reflect.SliceHeader or reflect.StringHeader Data field to or from Pointer.
	 158  //
	 159  // As in the previous case, the reflect data structures SliceHeader and StringHeader
	 160  // declare the field Data as a uintptr to keep callers from changing the result to
	 161  // an arbitrary type without first importing "unsafe". However, this means that
	 162  // SliceHeader and StringHeader are only valid when interpreting the content
	 163  // of an actual slice or string value.
	 164  //
	 165  //	var s string
	 166  //	hdr := (*reflect.StringHeader)(unsafe.Pointer(&s)) // case 1
	 167  //	hdr.Data = uintptr(unsafe.Pointer(p))							// case 6 (this case)
	 168  //	hdr.Len = n
	 169  //
	 170  // In this usage hdr.Data is really an alternate way to refer to the underlying
	 171  // pointer in the string header, not a uintptr variable itself.
	 172  //
	 173  // In general, reflect.SliceHeader and reflect.StringHeader should be used
	 174  // only as *reflect.SliceHeader and *reflect.StringHeader pointing at actual
	 175  // slices or strings, never as plain structs.
	 176  // A program should not declare or allocate variables of these struct types.
	 177  //
	 178  //	// INVALID: a directly-declared header will not hold Data as a reference.
	 179  //	var hdr reflect.StringHeader
	 180  //	hdr.Data = uintptr(unsafe.Pointer(p))
	 181  //	hdr.Len = n
	 182  //	s := *(*string)(unsafe.Pointer(&hdr)) // p possibly already lost
	 183  //
	 184  type Pointer *ArbitraryType
	 185  
	 186  // Sizeof takes an expression x of any type and returns the size in bytes
	 187  // of a hypothetical variable v as if v was declared via var v = x.
	 188  // The size does not include any memory possibly referenced by x.
	 189  // For instance, if x is a slice, Sizeof returns the size of the slice
	 190  // descriptor, not the size of the memory referenced by the slice.
	 191  // The return value of Sizeof is a Go constant.
	 192  func Sizeof(x ArbitraryType) uintptr
	 193  
	 194  // Offsetof returns the offset within the struct of the field represented by x,
	 195  // which must be of the form structValue.field. In other words, it returns the
	 196  // number of bytes between the start of the struct and the start of the field.
	 197  // The return value of Offsetof is a Go constant.
	 198  func Offsetof(x ArbitraryType) uintptr
	 199  
	 200  // Alignof takes an expression x of any type and returns the required alignment
	 201  // of a hypothetical variable v as if v was declared via var v = x.
	 202  // It is the largest value m such that the address of v is always zero mod m.
	 203  // It is the same as the value returned by reflect.TypeOf(x).Align().
	 204  // As a special case, if a variable s is of struct type and f is a field
	 205  // within that struct, then Alignof(s.f) will return the required alignment
	 206  // of a field of that type within a struct. This case is the same as the
	 207  // value returned by reflect.TypeOf(s.f).FieldAlign().
	 208  // The return value of Alignof is a Go constant.
	 209  func Alignof(x ArbitraryType) uintptr
	 210  
	 211  // The function Add adds len to ptr and returns the updated pointer
	 212  // Pointer(uintptr(ptr) + uintptr(len)).
	 213  // The len argument must be of integer type or an untyped constant.
	 214  // A constant len argument must be representable by a value of type int;
	 215  // if it is an untyped constant it is given type int.
	 216  // The rules for valid uses of Pointer still apply.
	 217  func Add(ptr Pointer, len IntegerType) Pointer
	 218  
	 219  // The function Slice returns a slice whose underlying array starts at ptr
	 220  // and whose length and capacity are len.
	 221  // Slice(ptr, len) is equivalent to
	 222  //
	 223  //	(*[len]ArbitraryType)(unsafe.Pointer(ptr))[:]
	 224  //
	 225  // except that, as a special case, if ptr is nil and len is zero,
	 226  // Slice returns nil.
	 227  //
	 228  // The len argument must be of integer type or an untyped constant.
	 229  // A constant len argument must be non-negative and representable by a value of type int;
	 230  // if it is an untyped constant it is given type int.
	 231  // At run time, if len is negative, or if ptr is nil and len is not zero,
	 232  // a run-time panic occurs.
	 233  func Slice(ptr *ArbitraryType, len IntegerType) []ArbitraryType
	 234  

View as plain text